
UNIVERSITY OF CALIFORNIA,
IRVINE

Interactive Worst-case Execution Time Analysis of Hard Real-time Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Trevor Wade Harmon

Dissertation Committee:
Professor K.H. (Kane) Kim, Chair

Professor Kwei-Jay (K.J.) Lin
Professor Jean-Luc Gaudiot

2009

c© 2009 Trevor Wade Harmon

Portions of Chapters 2–7 and Appendices A and B c© 2007, 2008 IEEE
All other materials c© 2009 Trevor Wade Harmon unless otherwise noted

DEDICATION

To my wife, Florence, for her never-ending love and support

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xii

ABSTRACT OF THE DISSERTATION xvi

1 Introduction 1
1.1 What Is a True Real-time System? 4
1.2 The Rise of Distributed Real-time Systems 7

2 Interactive Analysis 14
2.1 The Importance of Worst-Case Execution Time 18
2.2 Current Methods for Obtaining WCET 23
2.3 What Is Interactive Analysis? . 28
2.4 Research Objectives and Contributions 35

3 Hardware and Software Requirements for Interactive Analysis 39
3.1 The Trouble with C . 40
3.2 Java as a Catalyst . 44
3.3 Java in Real-Time Systems . 51
3.4 Java Microprocessors . 58

4 Annotating Control Flow for Interactive Analysis 66
4.1 Related Work . 70
4.2 Source-Annotated Control Flow Analysis 73
4.3 Strengths and Limitations of Decompilation 80
4.4 Cascade: A Control Flow Analysis Tool 87

4.4.1 Control Flow Graphs vs. Control Flow Trees 90
4.4.2 Performance of Cascade . 95
4.4.3 Limitations of Cascade . 98

iv

5 Interactive Worst-Case Execution Time Analysis 102
5.1 The Theory of WCET Analysis . 108

5.1.1 Control Flow Analysis . 110
5.1.2 Low-level Analysis . 112
5.1.3 Longest Path Computation 117

5.2 The Practice of WCET Analysis . 126
5.2.1 Research Prototypes . 127
5.2.2 Commercial Tools . 129

5.3 Interactive WCET Analysis . 131
5.3.1 Back-annotation . 133
5.3.2 Related Work . 134

5.4 The Road to True Interactive WCET Analysis 139

6 Clepsydra: An Interactive WCET Analysis Tool 140
6.1 An Overview of Clepsydra . 143
6.2 Assumptions and Limitations . 146
6.3 An Editor Plugin for Back-annotation 149
6.4 The Modular Components of Clepsydra 152

6.4.1 Analysis Strategy . 152
6.4.2 Loop Bound Strategy . 154
6.4.3 Timing Strategy . 156
6.4.4 Cache Strategy . 157

6.5 Evaluation . 165
6.5.1 Performance Analysis . 166
6.5.2 Accuracy Analysis . 168
6.5.3 Correctness Analysis . 171

7 Interactive Timing Analysis of Software Libraries 174
7.1 Worst-case Execution Time in Libraries 179
7.2 Goals for Hard Real-time Libraries 181
7.3 Libraries for Real-time Java . 181
7.4 Related Work . 183

7.4.1 Trigonometric Library Functions 184
7.4.2 Javolution . 184

7.5 Libraries for Safety-critical Environments 187
7.6 Requirements for an Analyzable Real-time Library 190
7.7 Canteen: A Prototype for an Analyzable Library 192
7.8 Prototype Design and Implementation 195

7.8.1 Analyzable Memory Consumption 195
7.8.2 Analyzable Loops . 200

7.9 Prototype Evaluation . 202
7.9.1 Performance Analysis . 203
7.9.2 Predictability Analysis . 207
7.9.3 Heap Allocation Analysis . 211

7.10 Restrictions of an Analyzable Library 213

v

7.10.1 Memory Pool Restrictions . 213
7.10.2 Exception Handling Compromises 216
7.10.3 Unimplemented Methods . 217

8 Examples of Interactive WCET Analysis 219
8.1 Hash Functions . 219
8.2 Sensor Polling . 222

9 Conclusions and Future Work 228

Bibliography 231

Appendices 255
A A Survey of Worst-Case Execution Time Analysis for Java 255

A.1 Bytecode as an Intermediate Representation 256
A.2 High-level Analysis for the Java Language 258
A.3 Low-level WCET Analysis for Java Bytecode 262
A.4 WCET Analysis for Java-specific Processors 265
A.5 Other Work in WCET Analysis for Java 267
A.6 Conclusion . 269

B WCET Annotations in Java . 269
B.1 Prior Work in WCET Annotations for Java 271
B.2 A Lack of Standards . 273
B.3 A Standard for WCET Annotations in Java 274
B.4 Applying Java’s Annotation Standard to WCET 282
B.5 A Java Compiler for WCET Annotations 287
B.6 Conclusion . 289

vi

LIST OF FIGURES

Page

1.1 Potato sorting machine . 3
1.2 Potato sorting machine in action . 3
1.3 Utility curves . 5
1.4 Cost growth of centralized vs. distributed architectures 7
1.5 Virtual Yellow 1st and Ten Line . 10
1.6 Linatronic real-time bottle inspector 12

2.1 Latency measurements in real-time middleware 16
2.2 The weakness of measurement . 18
2.3 Hierarchy of real-time scheduling algorithms 20
2.4 Manual WCET analysis . 25
2.5 Automated WCET analysis . 27
2.6 Traditional WCET analysis vs. interactive WCET analysis 31
2.7 Existing work in real-time systems 37
2.8 Chapter overview . 38

3.1 Layers of abstraction in interactive analysis 41
3.2 Top seven stated reasons for Java . 47
3.3 Bytecode abstractions in WCET analysis 49
3.4 FlexPicker: a three-armed industrial robot 53
3.5 JAviator: a custom-built quad-rotor helicopter 54
3.6 ScanEagle: an unmanned aerial vehicle 55
3.7 Java-powered autonomous underwater vehicle 55
3.8 Predictability on a Java processor . 60
3.9 The aJile processor on the JStamp board 63

4.1 Layers of abstraction in interactive analysis 69
4.2 Control flow analysis in the Soot framework 72
4.3 Control flow visualization with aiCall 74
4.4 Control flow visualization with Avrora 75
4.5 Control flow visualization with WCA 76
4.6 Sample source code for demonstrating control flow analysis 77
4.7 Traditional vs. annotated control flow graphs 79
4.8 Annotated control flow graph . 81
4.9 Source code before obfuscation . 83

vii

4.10 Source code after obfuscation . 84
4.11 A typical decompilation process in Java 85
4.12 UML diagram of Cascade’s control flow classes 88
4.13 Annotated control flow tree . 93
4.14 Speed of control flow construction in Cascade 96
4.15 Speed of control flow drawing in Cascade 98
4.16 Integration of Cascade into a development environment 99

5.1 Layers of abstraction in interactive analysis 104
5.2 Safety versus tightness in WCET analysis 106
5.3 An example of analyzing JOP’s method cache 116
5.4 An example of tree-based WCET analysis 118
5.5 Pseudocode of a tree-based WCET analysis algorithm 119
5.6 A simple program demonstrating the false path problem 121
5.7 A control flow graph representation of Figure 5.4 124
5.8 Formulation an ILP problem for the IPET algorithm 125
5.9 Screenshot of the Cinderella WCET analysis tool 128
5.10 Screenshot of the Chronos WCET analysis tool 130
5.11 Back-annotation in Kirner’s WCET analysis tool 136
5.12 Screenshot of the RapiTime WCET analysis tool 138

6.1 Layers of abstraction in interactive analysis 143
6.2 WCET analysis in the Volta tool suite 146
6.3 Clepsydra plugin for jEdit . 150
6.4 Analysis strategy class diagram . 153
6.5 An excerpt of a timing strategy implementation 157
6.6 Control flow graph with method cache support 159
6.7 ILP formulation with method cache support 161
6.8 Pseudocode of an enhanced tree algorithm for method cache analysis 163
6.9 Performance of tree vs. IPET analysis for a single method 167
6.10 Performance of tree vs. IPET analysis for method invocations 168
6.11 Clepsydra’s WCET pessimism ratios for a variety of benchmarks . . . 169

7.1 Photograph of the Mark I computer 176
7.2 An optimized hypotenuse function from Sun’s Java library 178
7.3 ArrayList performance . 180
7.4 HashMap vs. FastMap performance 186
7.5 Memory pools in a linked list . 198
7.6 Deletion in the list-tree data structure 199
7.7 Performance of collection class operations 206
7.8 Predictability of array-based list classes 208
7.9 Predictability of link-based list classes 209
7.10 Predictability of tree-based maps . 210
7.11 Predictability of Javolution maps . 211
7.12 Memory consumption in random-access lists 212

viii

8.1 Measured period of a checksum algorithm 222
8.2 Measured period of a CRC algorithm 223
8.3 Using interactive analysis to compare buffer implementations 225
8.4 Measured period of a linked list buffer implementation 226
8.5 Measured period of an array-based buffer implementation 227

A.1 Javelin block diagram . 258
A.2 Portability of WCET information using bytecode 260
A.3 Extensible Annotation Class example 261
A.4 Hunt’s annotation syntax . 263
A.5 Flow of WCET information in Sk̊anerost 268
B.6 A typical example of WCET annotations 270
B.7 Class file format for Java annotations 278
B.8 Source code example of accessing Java annotations 280
B.9 WCET annotations using the current Java standard 286
B.10 An example of a statement annotation’s structure 289

ix

LIST OF TABLES

Page

1.1 Real-life examples of real-time deadlines 6

2.1 Real-time scheduling equations . 20

7.1 Time complexity of the Canteen classes 203
7.2 Collection classes used in the performance evaluation 204

B.1 A sample of WCET annotation styles in real-time Java 272
B.2 Java annotation retention policies . 280
B.3 Proposed specifications for improving Java’s annotation facility 283

x

ACKNOWLEDGMENTS

A dissertation is often thought of as a solitary endeavor, but it is very much a team
effort. Its success depends on exposure to others’ ideas and feedback from one’s
peers. No researcher, no matter how talented, can win the dissertation game by
playing alone.

Without a doubt, the head coach of this dissertation’s team is Raymond Klefstad, my
advisor. He took a chance by recruiting me as a rookie graduate student, providing
me with the funding and training I needed to stay in the game. Without his support,
this dissertation would not have been possible.

I am also grateful for the entire coaching staff: Lichun Bao, Kane Kim, Falko Küster,
and Jörg Meyer served on my qualifying examination committee. Kane Kim chaired
the defense committee with the assistance of K.J. Lin and Jean-Luc Gaudiot. Their
guidance was invaluable.

My teammates at the Distributed Object Computing laboratory deserve many thanks,
as well: Juan Andrés Colmenares Diaz, Shruti Gorappa, Jie Hu, Hojjat Jafarpour,
Jinhwan Lee, Mark Panahi, Krishna Raman, Gunar Schirner, Chia-Yen Shih, and Yue
Zhang. When not helping me directly with coding or writing, they cheered me on
from the sidelines, providing the moral support I needed to get out of the occasional
slump.

Surprisingly, this dissertation received some major-league assistance from intellectual
athletes all over the globe, some of whom I could never meet and had to collabo-
rate only via email. Martin Schöberl deserves special thanks for creating the Java
Optimized Processor (JOP), a device that allowed me to validate my claims with a
physical implementation. He also assisted me with research ideas, funding, and even
JOP technical support. Jochen Hönicke, creator of the Java Optimize and Decompile
Environment (JODE), provided crucial advice that allowed me to modify JODE for
annotated control flow analysis. Paulo Abadie Guedes, Raimund Kirner, and Ras-
mus Pedersen helped me gain valuable new insight into the finer points of worst-case
execution time analysis.

Successful sports teams are often a result of generous funding, and doctoral disser-
tations are no different. The financial support of the National Science Foundation
and its Graduate Research Fellowship Program helped me obtain vital equipment
and extra time to focus on my research. I also thank the Institute of Transportation
Studies at UCI for providing funding through a graduate research assistantship.

Finally, I thank my parents, Patrick and Sharon Harmon, who have supported me
from the beginning.

xi

CURRICULUM VITAE

Trevor Wade Harmon

EDUCATION

Ph.D. in Electrical and Computer Engineering 2009
University of California, Irvine Irvine, California

M.S. in Electrical and Computer Engineering 2005
University of California, Irvine Irvine, California

Bachelor of Science in Computer Engineering 1998
Washington University Saint Louis, Missouri

Associate of Arts in Liberal Arts 1995
Johnson County Community College Overland Park, Kansas

RESEARCH EXPERIENCE

Graduate Research Assistant 2003–2005
University of California, Irvine Irvine, California

Research Assistant 1998–1999
Institute for Biomedical Computing Saint Louis, Missouri

TEACHING EXPERIENCE

Teacher Trainee 2005–2006
California Community College Internship Program Santa Ana, California

English Teacher 2001–2002
Nova Group Tarumi, Japan

Math and Physics Teacher 1999–2001
Peace Corps Tumu, Ghana

SELECTED HONORS AND AWARDS

Graduate Research Fellowship 2005–2008
National Science Foundation

Engineers’ Class of 1991 Scholarship 1995–1998
Washington University

xii

REFEREED JOURNAL PUBLICATIONS

Design, implementation, and test of a wireless peer-to-
peer network for roadway incident exchange

2009

International Journal of Vehicle Information and Communication Systems, pg. 288–305
T. Harmon, J. Marca, R. Klefstad, and P. Martini

REFEREED CONFERENCE PUBLICATIONS

Toward Libraries for Real-Time Java May 2008
Symposium on Object Oriented Real-Time Distributed Computing, pg. 458–462
T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad

A Modular Worst-case Execution Time Analysis Tool for
Java Processors

Apr. 2008

Real-Time and Embedded Technology and Applications Symposium, pg. 47–57
T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad

Interactive Back-annotation of Worst-case Execution Time
Analysis for Java Microprocessors

Aug. 2007

Embedded and Real-Time Computing Systems and Applications, pg. 209–216
T. Harmon and R. Klefstad

Identification and Removal of Program Slice Criteria for
Code Size Reduction in Embedded Systems

May 2007

International Embedded Systems Symposium, pg. 269–278
M. Panahi, T. Harmon, J. Colmenares, S. Gorappa, and R. Klefstad

Toward a Unified Standard for Worst-Case Execution Time
Annotations in Real-Time Java

Mar 2007

Parallel and Distributed Real-Time Systems
T. Harmon and R. Klefstad

A Survey of Worst-Case Execution Time Analysis for Real-
Time Java

Mar 2007

Java and Components for Parallelism, Distribution and Concurrency
T. Harmon and R. Klefstad

Automatic Performance Visualization of Distributed Real-
Time Systems

Apr. 2006

Symposium on Object-Oriented Real-Time Distributed Computing, pg. 531–538
T. Harmon and R. Klefstad

RTZen: Highly Predictable, Real-time Java Middleware
for Distributed and Embedded Systems

Nov. 2005

Middleware, pg. 225–248
K. Raman, Y. Zhang, M. Panahi, J. Colmenares, R. Klefstad, and T. Harmon

xiii

VADRE: A Visual Approach to Performance Analysis of
Distributed, Real-time Systems

Jun. 2005

Modeling, Simulation and Visualization Methods, pg. 121–126
T. Harmon and R. Klefstad

Late Demarshalling: A Technique for Efficient Multi-
language Middleware for Embedded Systems

Oct. 2004

Distributed Objects and Applications, pg. 1155–1172

G. Schirner, T. Harmon, and R. Klefstad

Adaptive Techniques for Minimizing Middleware Memory
Footprint for Distributed, Real-Time, Embedded Systems

Oct. 2003

Computer Communications, pg. 54-58
M. Panahi, T. Harmon, and R. Klefstad

BOOKS

Web Developer’s Guide To Visual J++ And ActiveX 1996
Coriolis Group Books

SELECTED TECHNICAL PUBLICATIONS

CORBA is dead! Long live CORBA! Mar. 2004
Linux Magazine

Portability and the ARM Processor Sep. 2003
Dr. Dobb’s Journal

Linux and the iPAQ, Arm in Arm May 2003
The C/C++ Users Journal

SOFTWARE

Volta volta.sourceforge.net
Development tools for distributed, hard real-time Java software

HR-XSL hr-xsl.sourceforge.net
XML transformations for a curriculum vitae or résumé

xiv

file://localhost/Users/trevor/Documents/School/UCI/Ph.D./Publications/Dissertation/hr-xsl.sourceforge.net
file://localhost/Users/trevor/Documents/School/UCI/Ph.D./Publications/Dissertation/volta.sourceforge.net

INVITED TALKS

The Volta Project Nov. 2007
Orange County Embedded Java Users’ Group Irvine, California

Real-time Java Feb. 2007
Orange County Embedded Java Users’ Group Huntington Beach, California

Static Timing Analysis for Multi-Robot Systems Nov. 2006
Space and Naval Warfare Systems Center San Diego, California

PROFESSIONAL MEMBERSHIPS

Institute of Electrical and Electronics Engineers (IEEE)

xv

ABSTRACT OF THE DISSERTATION

Interactive Worst-case Execution Time Analysis of Hard Real-time Systems

By

Trevor Wade Harmon

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2009

Professor K.H. (Kane) Kim, Chair

Hard real-time systems are already common in aerospace, automobiles, and industrial

robotics, and they will become even more prevalent with the emergence of new do-

mains such as computer-assisted surgery. Perpetual concerns over safety and overall

mission success require a guarantee that these increasingly complex systems perform

as designed.

One technique involves a static analysis to place an upper bound on the worst-case

execution time (WCET) of hard real-time software. Without knowledge of WCET,

the timing behavior of a program cannot be guaranteed. Although substantial re-

search has been applied to the problem of WCET analysis, virtually all prior work

has focused on increasing accuracy without regard to speed. The resulting imple-

mentations are often too slow to be integrated into the development cycle, requiring

WCET analysis to be postponed until a final validation phase. Fixing timing errors

after the code has been written is expensive, time-consuming, and may necessitate a

redesign of the system.

A new approach, interactive WCET analysis, would prevent such problems. Its nov-

elty lies in making timeliness a fundamental concern of system design from the mo-

ment the first line of code is written. Rather than waiting until an implementation

xvi

is complete before starting the analysis, it incorporates knowledge of worst-case time

into the development cycle continuously and dynamically, allowing early detection

and removal of timing errors.

This dissertation proposes a variety of methods for making WCET analysis interac-

tive. It begins with a simplification of the problem by relying on Java-based micropro-

cessors to eliminate many sources of unpredictability. It then presents contributions

in a bottom-up fashion, starting with a technique for annotating control flow graphs

with decompiled source code. These graphs are used to map the results of WCET

analysis to source code as it is written, a process known as interactive back-annotation.

Additional contributions include compiler support for type-safe WCET annotations,

statically analyzable collection classes, and a fast tree-based analysis algorithm with

method cache support. Each contribution is implemented within a suite of extensible,

modular, open-source tools that demonstrate how interactive WCET analysis can be

integrated into a traditional software development environment.

xvii

Chapter 1

Introduction

Ask three different software engineers what a real-time system is, and you will likely

get three different answers. The video compression specialist will define real time as

a system that encodes movies as fast as they can be recorded. A software developer

at a sports news network might claim that his web site delivers basketball scores over

the Internet in real time. And a 3D animation expert might rave about graphics

hardware that generates complex computer images in the blink of an eye, without

delay—that is, in real time.

None of these systems are truly real-time. In fact, they are more accurately described

as pseudo-real-time. Many online stock market systems, for example, claim to provide

real-time quotes, but there is no guarantee that the data they broadcast reflects

current market conditions. External factors, such as traffic congestion on the Internet,

could inject unpredictable delays that prevent price changes from appearing as soon

as they are posted.

Examples like these show that the adoption of the phrase “real time” into modern

English has clouded its meaning. Indeed, “real time” has in some circles become

1

synonymous with “real fast.” Consider, for example, rendering software, which creates

a picture or an animation based on a geometric model. The duration of this process

depends on the complexity of the scene—a forest with trees and thousands of leaves

will take much longer to render than a simple cube.

This mathematically intensive process is also heavily dependent on the speed of the

hardware doing the calculations. When Pixar’s Toy Story was first released, the an-

imators relied on 117 computers working in parallel; each frame of the movie took

about two hours of processor time [1]. Today, Pixar’s render farms are more than

300 times faster, but the rendering of a Toy Story scene would still take around four

minutes. There is a substantial delay between the time an artist changes a model and

the time that the model appears within the fully rendered scene. However, as com-

puters grow ever faster, cheaper, and more parallel, this delay will drop. Eventually,

it could disappear entirely, resulting in “real-time” rendering.1

This relationship between computer power and processing latency has led to a mis-

perception that real-time simply means being fast enough to eliminate delays. But

how fast is “fast enough,” and what happens if the system sometimes fails to prevent

a delay? Even if a render farm had enough computing resources to generate scenes in

real time, stochastic events such as virtual memory paging or an excess of job requests

could easily reduce its performance. The system would suddenly and unexpectedly

cease to be real-time.

Fortunately, the consequence of losing real-time behavior in rendering software is

ordinarily benign. A temporary decrease in responsiveness would merely cause frus-

tration. If the delays become too long or frequent, the artist could simply take a

1In reality, render time is actually growing due to an appetite for detail and realism in animation
that tends to grow faster than computing resources can supply. As a result, an average frame in
Pixar’s Cars, which was released ten years after Toy Story, took fifteen hours to render. The goal
of real-time rendering, however, remains the same.

2

Figure 1.1: As potatoes roll through a sorting machine, a real-time system attached
to an array of digital cameras scans them for abnormal bumps and discolorations. If
detected, the system triggers a corresponding set of pneumatic fingers to redirect the
spud into a separate bin. (Photograph by R J Herbert Engineering Limited.)

Figure 1.2: These video stills illustrate the real-time behavior of the potato sorter in
Figure 1.1. In the first five stills, a camera has detected a discoloration, triggering
a set of pneumatic fingers to redirect the potato into a defect bin as it falls. In the
remaining stills, just milliseconds later, the camera triggers a different set of fingers
for a different set of potatoes. (Video by R J Herbert Engineering Limited.)

coffee break until real-time performance returns.

In other real-time systems, however, the repercussions of lateness are more dire.

Even seemingly mundane settings such as potato chip factories now rely on real-time

systems to keep food sanitary. As potatoes zoom by on a conveyor belt, an array

of digital cameras scans them for defects, as illustrated in Figures 1.1 and 1.2. If

any dark spots are detected, a set of pneumatic fingers are triggered to redirect the

defective potato off of the belt and into a separate bin. Any delay in this process,

even on the order of milliseconds, could allow rotten chips to reach the consumer.

In more elaborate systems, the result of improper timing can be disastrous: a space-

ship crash-lands in a desert, a tanker spills ten million gallons of oil onto a beach,

3

or a car skids out of control because its antilock brakes responded too slowly. Such

systems simply cannot tolerate late results in a computation.

1.1 What Is a True Real-time System?

This extreme variation in the consequence of lateness raises a question: How does one

separate the pseudo-real-time systems, such as rendering software, from the “real”

real-time systems? The distinction is important, as it can mean the difference between

an artist going on a coffee break or a catastrophe of fire, twisted metal, and possibly

the loss of human life. It mandates an objective method of distinguishing the various

types of real-time systems.

One popular classification system borrows a concept from economic theory known as

utility, which describes how valuable something is. The utility of a commodity, for

example, is a function of how much you have of it. Applying this idea of utility curves

to real-time systems was first proposed by Jensen [2] as a paradigm for scheduling

tasks. It has since developed into a means of defining the three basic types of real-time

systems: non-real-time, soft real-time, and hard real-time.

Figure 1.3 and Table 1.1 illustrate this point. The utility curves indicate the relative

importance of a result before and after some deadline at which the result is needed.

In the case of non-real-time systems, the deadline is an ill-defined gray area. Web

browsers, for instance, have a pseudo-deadline of approximately two seconds when

loading pages [3]. Most users notice delays that last longer than this period, but of

course a longer wait does not cause serious problems, only minor annoyances. Loading

a web page after the deadline still has some utility, but the value gradually declines

as the user gets more and more frustrated.

4

U
ti

li
ty

 o
f

re
su

lt

Time

Non-real-time

Deadline

U
ti

li
ty

 o
f

re
su

lt

Time

Soft real-time

Deadline

U
ti

li
ty

 o
f

re
su

lt

Time

Hard real-time

Deadline

Figure 1.3: The utility curve paradigm shows that hard real-time systems place the
highest emphasis on obtaining results at the proper time. If a deadline is missed, the
value of the result is zero.

In contrast, a soft real-time system has stricter deadlines. A DVD player, which

decodes video and audio streams in real time, is a typical example of this type of

system. Unlike a web browser, its deadlines are more tightly defined, and the penalty

for missing those deadlines is more apparent. In the case of lip synchronization, for

instance, experimental results have shown that the sound of an actor’s voice can be no

more than 160 milliseconds out of sync with the corresponding picture [5], otherwise

the mismatch becomes noticeable and distracting to the viewer. The utility of the

result therefore drops sharply after this deadline. It does not immediately drop to

zero, however, because the result may have some utility even if the deadline has

passed. (The assumption here is that displaying an out-of-sync movie is better than

no movie at all.) The deadline is very important but not absolutely crucial.

Finally, at the end of the spectrum of utility curves, the penalty for lateness is the most

severe. These systems are known as hard real-time systems because failure to meet

a deadline is a fatal fault. The utility of the result drops to zero instantly, as shown

in the graph. Safety-critical systems, such as avionics, are a typical example of this

case—after the airplane has crashed, there is no value in finishing the computation—

but even when human lives are not at risk, hard constraints can be found in many

real-time systems. The control of an unmanned Mars rover, for instance, requires

5

Table 1.1: In Real-Time Java Platform Programming [4], Peter Dibble offers these
real-life examples of real-time deadlines.

Type Real-life example

Non-real-time Mowing the lawn. Getting it done earlier is better, but generally
there is no point at which it suddenly becomes urgent.

Soft real-time Fixing lunch for your children on a relaxed summer day. The
children know the time they should be fed, and if you are late,
they get fussy. The level of hungry complaints gradually
increases after the deadline, but nothing really bad will happen.

Hard real-time A child flushing a T-shirt down the toilet. The deadline for
action is the moment before the child flushes. Missing the
deadline probably means that the shirt is ruined and a plumber
must be called. (A related example would be grabbing a child
before she runs into traffic. This variation is known as a
safety-critical hard real-time deadline because the safety of
human life is at risk.)

timeliness in all calculations to prevent the vehicle from tumbling into a ravine and

ruining the mission.

With this utility curve classification as a guide, the distinction between rendering

software and potato chip machines is now clear: The former is a non-real-time system,

while the latter is a hard real-time system. Of course, these are generalizations, and

often there is overlap between the categories. A system may have a mixture of hard

and soft real-time deadlines. For example, the control system for the potato chip

machine might have a graphical user interface with soft deadlines while its air hose

control system must keep to hard deadlines.

Distinct among the three cases, however, is the hard real-time version of the utility

curve. It presents major challenges because it transforms timeliness into a correctness

criterion. The overall correctness of the system depends on both functional correctness

and temporal correctness. In other words, the right answer delivered too late is just

as bad as the wrong answer.

6

S
y
st

e
m

 c
o

st

System size

Break-even point

Centralized
system

Distributed
system

Figure 1.4: Kopetz observes that a centralized system with a single powerful CPU
starts out with a lower cost, but as the system grows, there is a break-even point
beyond which the hardware for a distributed system is cheaper [6].

1.2 The Rise of Distributed Real-time Systems

While hard real-time deadlines complicate every aspect of system design and con-

struction, a new type of system gaining popularity in recent years promises to add

yet another layer of complexity: the distributed real-time system. Such systems split

computation across multiple processors, usually separated into physically indepen-

dent nodes that do not share a memory or a clock. Each node works together toward

a common goal and communicates with the other nodes over some network to share

results and ensure synchronization. This modular approach increases performance by

executing tasks in parallel, and it lowers costs, as shown in Figure 1.4, by sharing

expensive resources among multiple nodes. It also improves reliability and mainte-

nance because nodes can be made redundant and added or removed easily, at least

compared to a centralized, monolithic system.

At the same time, a distributed architecture magnifies any existing complexities in

the system. It adds new complications such as:

7

Clock synchronization In a distributed system, there exists no systemwide com-

mon clock. Even if all nodes in the system are initially synchronized to each

other, the quartz crystals that regulate clock ticks in a computer are not perfect

and will drift from the true time value. Some mechanism of synchronizing the

clocks, such as the Precision Time Protocol [7], must be incorporated into the

system.

Heterogeneous architectures Because nodes in a distributed system are indepen-

dent, they may have different implementations. The node controlling a user

interface, for example, may consist of a high-throughput Intel processor while

sensor nodes at the edge of the network may be implemented as low-power

ARM-based microcontrollers. The potential for a wide variety of implemen-

tations may not affect the high-level design and modeling of the system, but

it can greatly hinder the development process because the same workflow and

code base cannot be used for all elements of the system.

Dynamic task allocation Imagine a group of robots designed to perform a coop-

erative task. Individual robots may be assigned sub-tasks of the system-wide

goal, but as the robots’ environment changes, the sub-tasks may need to be

continuously adjusted. For example, a robot needing to perform a lengthy

computation but busy with other work could offload the task to an idle robot

elsewhere in the system. This dynamic task allocation balances the utilization

of resources and improves overall performance. In a distributed environment,

however, there may be no central coordinator available to make task assign-

ments, and no robot has a complete view of the system, thereby making the

problem of task allocation much more difficult.

Blocking A distributed system, by its nature, depends on communication among

nodes. A fundamental problem arises when one node sends a message to an-

8

other, but the receiver node is busy with some other task. The individual bits

of the message could also be corrupted, perhaps due to interference in a wireless

link, requiring the message to be re-sent. These events could cause the sender

node to block while waiting for a response. Even if the message passing is

asynchronous and no acknowledgment is required, the question remains of what

the sender should do in the meantime. The precise scheduling of the real-time

distributed system would be disrupted.

These issues add new and challenging dimensions to designing and building real-time

systems. Making matters worse, they must all be addressed without neglecting the

end-to-end timing constraints of the system. Despite these concerns, a distributed

architecture is the preferred implementation of a real-time system [6], especially if the

break-even point of Figure 1.4 is reached. The primary argument is composability.

In the context of real-time systems, composability means constructing larger systems

by integrating well-specified and well-tested subsystems while maintaining timeliness

throughout. The idea is that different components can be mixed and matched and

will work correctly without having to redesign or retest those that have already been

validated. Dependability arguments also advocate the distributed approach because

it achieves fault-tolerance by replicating nodes.

As an example of composability, consider the first down line that appears to television

viewers of American football games. This virtual, movable marker does not actually

exist but is superimposed onto the screen, giving the illusion of a yellow line painted

on the field. The illusion is enhanced by removing key parts of the image so that

players appear to run over the line, as shown in Figure 1.5.

This on-screen magic is created by a distributed real-time system called 1st and Ten

from Sportvision. It consists of up to five separate broadcast cameras outfitted with

9

Figure 1.5: 1st and Ten from Sportvision is an example of a composable, distributed
real-time system. It consists of four high-end workstations for video processing, three
embedded systems for data acquisition of camera movements, and a standard personal
computer for the human operator’s user interface. (Photograph and frame capture
by Sportvision, Inc.)

custom sensors and encoders to capture the pan, tilt, and zoom of the cameras. The

data enables the virtual line to follow suit, staying in perspective and getting larger

or smaller as needed. This feature places very rigid timing constraints on the system;

it must check camera positions, map the position of the line, and superimpose the

image onto the video feed thirty times every second.

Because 1st and Ten’s architecture is distributed, its components are composable.

Any of the computing nodes in the system can be swapped in and out, as long as

they provide the necessary thirty-frames-per-second timeliness. New and improved

sensors and actuators can be tested separately, before system integration, to make

sure that they meet this requirement. In addition, the redundancy of multiple nodes

means that if one camera fails, the system as a whole remains functional. This

pluggable, distributed approach to real-time systems helps reduce overall cost and

increase fault-tolerance.

1st and Ten is certainly not the only distributed real-time system to see commercial

10

success. These types of systems are becoming increasingly popular in order to take

advantage of the improved scalability, flexibility, and performance that distributed

designs offer. A variety of cutting-edge applications in this area have begun to appear,

such as multi-robot systems [8]. To facilitate the construction of such systems, the

industry has adopted various standards for real-time network communication:

• The Controller Area Network (CAN), a protocol and bus standard, allows mi-

crocontrollers and similar devices to communicate with each other. The pro-

tocol can act as a priority-based global dispatcher to support hard real-time

communication under certain fault assumptions [9].

• The Time-Triggered Protocol (TTP), designed for hard real-time safety-critical

applications, is a convention for fault-tolerant communication [10]. It uses a

Time Division Multiple Access (TDMA) protocol where all nodes share a com-

mon time base. Collisions and overloads are guaranteed not to exist. A com-

peting standard, known as FlexRay, shares many of the same goals. Both have

been adopted by major automobile manufacturers to implement drive-by-wire,

brake-by-wire, and other “X-by-wire” systems [11].

• The Common Object Request Broker Architecture (CORBA) [12], a specifica-

tion for a type of software known as middleware, resides between applications

and the underlying operating system. It decreases the effort required to develop

distributed systems by allowing them to be composed from reusable compo-

nents, rather than building the software from scratch. The Real-Time CORBA

specification [13] extends the standard to support end-to-end predictability for

remote operations. Real-Time CORBA has been used in a range of distributed

real-time systems, including avionics missions, high-energy physics experiments,

and image processing (see Figure 1.6) [14].

11

Figure 1.6: The Linatronic system from Krones is a network of ten cameras that
examines glass bottles for defects. It relies on Real-Time CORBA middleware to
process the images within fifty milliseconds, providing a guarantee on throughput of
twenty bottles per second. (Photograph by Krones AG.)

• Like Real-Time CORBA, the Data Distribution Service (DDS) is a middleware

specification for real-time systems [15]. Unlike CORBA’s synchronous, tightly-

coupled messaging paradigm, DDS takes a publish/subscribe approach where

the sender of a message does not necessarily know who its receivers are. This

decoupling of publishers from subscribers allows for increased scalability and

more flexible network topologies. DDS has been used for military simulations,

ship subsystem control, and unmanned underwater vehicles.

Despite the inherent advantages in these standards, the practice of building dis-

tributed real-time systems remains difficult. Some observers have even suggested

that it is the most ambitious type of software engineering project that one could un-

dertake. Eric S. Raymond, writing in The Art of UNIX Programming [16], noted the

dangers of this new horizon:

12

The combination of threads, remote-procedure-call interfaces, and heavy-

weight object-oriented design is especially dangerous. Used sparingly and

tastefully, any of these techniques can be valuable—but if you are ever in-

vited onto a project that is supposed to feature all three, fleeing in terror

might well be an appropriate reaction.

In a presentation on information timeliness [17], Thomas F. Lawrence was even more

lugubrious, claiming:

If a software development project can be reasonably classified as distributed

real-time, it has an 80% chance of failure.

Indeed, the field of distributed real-time systems is relatively immature, and the

tools and techniques to aid their development are still low-level and somewhat basic.

The development process, when targeting non-trivial distributed designs, tends to

be cumbersome and tedious. When combined with the hard real-time aspect, which

demands increased testing and validation, it becomes an extremely arduous task.

Tom Van Vleck summed up the current situation nicely [18]:

We know about as much about software quality problems as they knew

about the Black Plague in the 1600s. We’ve seen the victims’ agonies and

helped burn the corpses. We don’t know what causes it; we don’t really

know if there is only one disease. We just suffer—and keep pouring our

sewage into our water supply.

13

Chapter 2

Interactive Analysis

While the bubonic plague revealed inadequacies of medical science, it also led to a

revolution in the way diseases and the human body are dealt with. Following the

Black Death of the 1300s, more emphasis was placed on anatomical investigation.

Doctors began to understand the inner workings of the body rather than simply

treating symptoms from the outside.

Today, software engineering of real-time systems is at a similar crossroads. These

systems are often so complex that they sometimes seem as mysterious as the Yersinia

pestis bacterium was to doctors of the medieval era. Of course, the mere inscrutability

of software is unlikely to cause a deadly pandemic on the scale of the Black Death,

yet we are becoming increasingly dependent on real-time systems in our everyday

life. No longer restricted to esoteric space and military applications, they are now

responsible for keeping us alive. When we drive, they regulate the engine and brakes.

When we fly, they maintain the aircraft’s flight path and help it take off and land.

When we are sick, they regulate our blood pressure and heartbeat.

Unfortunately, the revolution in medicine that followed the bubonic plague seems

14

overdue in the real-time software field. The functionality provided by such software

is becoming ever more complex, especially for the distributed variety, and the job

of testing for correct timing behavior becomes ever more difficult. The current sit-

uation manifests itself in ominous failure statistics. In the automotive industry, for

instance, 30% of electronics system breakdowns can be traced back to software timing

problems [19].

Compared to the remarkable instruments available to modern doctors—X-ray ma-

chines, CAT scans, electrocardiograms—the tools for analyzing the wellness of real-

time systems is considerably limited. Instead of understanding the timing properties

of a system at a fundamental level, engineers typically derive these properties through

coarse external observation. Research papers on real-time middleware, for instance,

use empirical evidence to make arguments about predictability. Figure 2.1 is a typi-

cal case; it shows timing measurements obtained from two middleware implementa-

tions [20].

The figure is essentially a histogram of latencies. It demonstrates that, for example,

the latency of method invocations in the middleware is almost always 2,000 microsec-

onds for 32-byte messages in a particular test environment. In rare instances, the

latency jumps to over 2,300 microseconds but never reaches 2,400. The middleware

authors rely upon these measurements to show that the software has firm upper

bounds on latency and is thus able to meet real-time constraints.

This evidence is circumstantial, however. Basing any claim of predictability on these

measurements is specious for two reasons:

Inferences vs. Guarantees Measurements infer predictability but do not guaran-

tee it. They apply only to a particular set of inputs in a particular environment.

Such inferences may provide suitable confidence for soft real-time systems, but

15

1900

2000

2100

2200

2300

2400

2500

32 128 256 512 1024

Compadres
RTZen

Message size (bytes)

R
o

u
n

d
-t

ri
p

 l
a
te

n
c
y
 (

m
ic

ro
se

c
o

n
d

s)

Figure 2.1: A series of tests under controlled conditions, such as these measurements
of method invocation latency in two middleware implementations, is often cited as
evidence of predictability in real-time software.

relying on them is dangerous for hard real-time and especially safety-critical

systems. An unexpected piece of input data could cause the system to react

more slowly than was measured during testing, as illustrated in Figure 2.2. At-

tempting to work around this problem by iterating through all possible inputs

would only lead to a state explosion that would be infeasible to measure for any

non-trivial program.

The Heisenbug Principle In 1927, Werner Heisenberg theorized that measuring

the momentum of a subatomic particle makes its position uncertain, while lo-

cating its position makes its momentum uncertain. This Heisenberg Uncertainty

Principle is analogous to the “observer effect,” in which the act of observation

changes the phenomenon being observed. In the case of a real-time system, the

16

very act of measuring its performance can disturb the system’s real-time char-

acteristics in a way that may cause missed deadlines and scheduling conflicts

that would not occur under normal execution. This uncertainty has led some

researchers to dub the condition a “heisenbug.”1 In addition to making perfor-

mance problems exceptionally difficult to understand and repair, bugs of this

kind also cast doubt on the validity of measurements such as those in Figure 2.1.

For example, the study’s authors were unable to explain the jitter that occurs

near the upper end of each histogram for the Compadres data set. Whether

this anomaly will continue to occur after system deployment or if it is simply a

peculiar artifact of the testbed is unknown.

There is simply too much uncertainty in measurement. Without careful planning

and extensive analysis during design and implementation—not just measurements

taken during the final test phase—the system has no guarantee on response time

and degrades to a best-effort approach. In practice, building a real-time system

thus becomes more like an art than a science. A common tactic in the safety-critical

aerospace industry, for instance, is to over-design systems so that processor utilization

is extremely low—around 1%—in the hope that unplanned behavior does not exceed

CPU resources, resulting in missed deadlines and critical failure.

This over-provisioning of the processor is wasteful. It demands CPU resources two

orders of magnitude greater than what is actually required (1% vs. 100%). Worse,

it unmasks a more fundamental problem: Despite decades of research, practitioners

still cannot trust modern tools and techniques to produce a real-time system that

1The heisenbug pun has a storied etymology. Originally coined by Bruce Lindsay [21], its first
appearance in print came from Lindsay’s colleague Jim Gray in 1985 [22]. Since then, the term
has spawned a variety of similar monikers for unusual software bugs: the bohrbug, which occurs
reliably under a well-defined set of conditions; the mandelbug, whose causes are so complex that its
behavior appears chaotic; and the schrödinbug, which manifests only when someone observes that
the program never should have worked in the first place, at which point it promptly stops working
for everyone until fixed. An excellent treatise on the history of the heisenbug and its offspring was
compiled by Grottke and Trivedi [23].

17

N
u

m
b

e
r
 o

f
 m

e
a
s
u

r
e

m
e

n
t
s

Execution time

Unmeasured
execution
times True

maximum
latency

Maximum
latency as
measured

Measurement distribution

Figure 2.2: This histogram of execution time for a fictional real-time task illustrates
the weakness of measurement when making claims of predictability. Performance
testing may produce a data distribution like the shown one here, leading the developer
to underestimate the maximum latency of the task.

performs as expected. There is clearly not enough confidence in the predictability of

software. For hard real-time systems, a deeper, stronger guarantee is necessary.

2.1 The Importance of Worst-Case Execution Time

This is not an immutable situation. In 1986, while developing a real-time variant

of the programming language Euclid, Kligerman and Stoyenko put forth a concept

known as worst-case execution time, or WCET [24].2 WCET places an upper bound

2Over the years, WCET has been known by other names, such as maximum execution time, or
MAXT. These terms have since been deprecated in favor of WCET.

18

on the execution time of a given software task, where “execution time” is simply

the time a particular processor takes to execute that task. The idea behind WCET

is to make timeliness a property that can be formally analyzed rather than simply

measured. It yields a provably correct bound rather than an educated guess.

This concept of worst-case execution time is a fundamental departure from average-

case execution time, a performance metric with which most software developers are

concerned. Developers of hard real-time systems, on the other hand, must be inti-

mately familiar with worst-case performance. Without knowing the WCET for each

time-dependent task in the system, no guarantee can be made that the system will

meet its deadlines, possibly leading to critical failure or even injury and loss of life.

In spite of this fact, worst-case execution time analysis has received little attention—

relative to the real-time field in general—from the research community. In universities,

too, courses on real-time systems focus primarily on scheduling algorithms, normally

omitting WCET from the syllabus. And in industry, the situation is similar: WCET

analysis is seldom performed or even ignored entirely.

Part of this apathy toward WCET comes from the ostensible maturity of the field.

Remarkable advancements in real-time research, such as priority inversion avoidance,

real-time garbage collection, and operating systems designed for real-time behavior,

give the impression that all of the requisite elements for building a time-predictable

system are readily available. There is even an entire hierarchy of task scheduling

algorithms, shown in Figure 2.3, that are able to order the release time of tasks such

that each one is guaranteed to meet its deadline (assuming that such an order exists).

An essential element is missing, however. All of these scheduling algorithms require

knowledge of worst-case execution time. Without this key piece of input, any resulting

schedule is invalid. For example:

19

Realtime scheduling

Uniprocessor

Multiprocessor

Partitioning Global

Hybrid

Off-line On-line

Static priority Dynamic priority

Preemptive Non-preemptive Planning-based Best-effort

Figure 2.3: Real-time scheduling algorithms devise a feasible schedule according to
various strict constraints, such as whether a task can be pre-empted. This figure,
based on work by Mohammadi and Akl [25], shows the basic taxonomy of these
algorithms.

Table 2.1: Real-time scheduling algorithms require worst-case execution time (the C
variables) to determine whether deadlines can be met.

Rate-monotonic

Earliest deadline first

Least slack time

Time-triggered

20

Rate-monotonic This algorithm assumes that no task has a WCET longer than

its deadline. Furthermore, its feasibility analysis requires WCET as input:

U =
∑n

i=1
Ci
Ti
≤ n

(
n
√

2− 1
)
, where U is processor utilization, n is the number

of processes, Ti is the release period, and Ci is the WCET.

Earliest Deadline First (EDF) This scheduler does not require WCET knowledge

at run-time. However, EDF is unstable (one late job causes many other jobs

to be late), so a guarantee against overloading is vital. The only way to make

this guarantee is to perform an acceptance test: U =
∑n

i=1
Ci
Ti
≤ 1, where the

variables have the same meanings as above. Again, note that WCET is part of

the equation.

Least Slack Time (LST) The slack (also called “laxity”) of a real-time task is

defined as d− t− c, where d is the deadline, t is the current time, and c is time

required to complete the remaining portion of the job. Determining c requires

knowledge of the WCET.

Time-triggered Also known as clock-driven or time-driven, this approach depends

on a static schedule computed prior to execution. The static schedule dictates

an exact moment in time for each task’s release. In such a scheme, task n

cannot be scheduled until task n − 1 completes; otherwise, two tasks could be

released at the same time. Preventing this failure requires knowledge of each

task’s WCET.

Note that all of the above algorithms depend on WCET, as shown in Table 2.1. For

this reason, even if the underlying operating system implements a solid, carefully

crafted real-time scheduling algorithm, making any guarantee about the predictable

behavior of a task is impossible unless its WCET is known. For example, the rate-

monotonic scheduler is provably optimal in the sense that if a feasible schedule exists,

21

the algorithm will find it [26]. It is a fallacy to presume, however, that the mere virtue

of having a rate-monotonic scheduler incorporated into a system makes that system

optimally real-time. If the WCET cannot be guaranteed, then the rate-monotonic

algorithm—or any other known scheduler—also provides no guarantee.

Given the importance of WCET, the natural question is how to obtain it. While most

real-time practitioners are aware of its significance, the job of calculating the WCET

is often perfunctory or even neglected. In many cases, a value for the WCET is simply

assumed to exist with little or no explanation. Consider, for instance, a white paper

from TimeSys Corporation describing a real-time video decoder system [27]:

By experimentation, it has been found that the longest frame decode time

on a given processor is six milliseconds.

In other words, the WCET was determined through ad hoc measurement. If any

portion of the hardware or software were to change, the experiment must be conducted

again.

Similar examples abound. In the Time-triggered Message-triggered Object (TMO)

programming scheme [28], WCET is fundamental to the underlying event model

and must be specified explicitly, yet the mechanism for determining this WCET

is left undefined. Likewise, the Real-Time Specification for Java [29] exposes API

methods, such as ReleaseParameters.setCost(RelativeTime), under the assumption that

the WCET parameter will somehow be obtained but without specifying how.

22

2.2 Current Methods for Obtaining WCET

Because of the lack of emphasis on finding WCET, methods for obtaining it are

somewhat primitive. A common tactic in industry is to perform a series of tests

under varying conditions and attempt to extrapolate the actual WCET from the

resulting measurements. While this approach works well for average response time,

worst-case response time is not amenable to measurement. An unexpected set of input

data could cause the system to react more slowly than was measured during testing,

as indicated in Figure 2.2. An upper bound on the WCET cannot be guaranteed

through measurement alone.

A more dependable and systematic approach to finding the WCET involves a static

analysis. Given the executable code for a task and the processor on which it will run,

static analysis provides a guaranteed upper bound on the time taken to execute the

task. Consider, for example, the following high-level expression:

a = b ∗ c

Compiled into low-level executable code, the expression may look something like this:

movl −16(%ebp) , %eax

i m u l l −12(%ebp) , %eax

movl %eax , −20(%ebp)

In theory, finding the WCET of this statement statically is simply a matter of sum-

ming the number of CPU cycles that each of these three instructions requires.

In reality, however, static analysis is never so simple. Large pipelines, branch predic-

tion, multi-level caching, and other sophisticated features of today’s processors cause

23

huge variances in execution time. While such features greatly improve average per-

formance, they come at the expense of worst-case performance. In the listing above,

for example, the movl instruction might take just one cycle if the requested data is

already in the cache, or many hundreds if the processor detects a cache miss and

must load the data from off-chip memory. The static WCET analysis must account

for this lengthy cache servicing time, even though its occurrence may be rare, re-

sulting in hugely overestimated WCET values. Although prior work has focused on

modeling the data flow through the processor to predict its state and thereby place a

tighter bound on WCET [30, 31, 32, 33], the techniques remain limited and extremely

challenging.

Modern languages are another enemy of tight WCET analysis. Just-in-time com-

pilation, a common technique for improving average performance in Java virtual

machines, causes the first few executions of a task to be slow while subsequent exe-

cutions are fast. Static analysis must account for this variance, leading to very large

estimates of WCET. Developers are faced with unsettling choices: Turning off just-in-

time compilation would merely slow down every execution, while reducing the WCET

to the expected (average) running time would be unsafe and defeat the very purpose

of analysis.

Even without these complexities, applying static analysis to find the worst-case exe-

cution time can be a tedious and time-consuming manual effort. A typical case can

be seen in Figure 2.4. In this assembly code listing for a microcontroller, the pro-

grammer has determined the WCET of the loops by looking up the specification of

each instruction, inserting its execution time as a source code comment, and then

manually calculating the total delay. Not only is this process inefficient and error-

prone, it is completely dependent on the target processor. If the processor changes,

the entire manual analysis must be redone. Programmer productivity suffers, and the

24

ing single blinks at a frequency of 1
Hz. Here, the half second delay rou-
tine drives the blink rate.

Pressing switch K drives PB1 low,

triggering an interrupt to the MCU
and causing it to jump to the inter-
rupt service routine INT0_LED2,
where the LED is driven to double

blinking. Therefore, the LED blink rate
can be doubled, depending on
whether the MCU has entered the
interrupt routine. The ATtiny11 can be
interrupted by either high or low sig-
nal inputs; here we chose the low
level trigger.

As described by my previous
article[1], you can use the Atmel
freeware AVRASM.EXE to assemble
the source code in Listing 1 to get a
Hex file, that is LED1N2.HEX; then
use the provided software
HEX2BIN.EXE to convert it to LED
1N2.BIN; then power up and run the
AVR High-Voltage programmer; in
the host PC, enter this binary file
name to let it transfer the binary data
to the programmer.

After programming the ATtiny11,
build the circuit shown in Figure 3
and verify its operation. This simple
circuit can be built on any solderless
breadboard.

440.0 HZ
STANDARD MUSIC
TONE GENERATION

Figure 4 is a simple but very
accurate circuit that generates the
440.0 Hz standard music tone. It
can act like a “tuning fork” for musi-
cal instruments. For example, you
can use it to check whether your
piano is out of tune by playing its
A4 key.

To get exact 440.0 Hz tone, both
hardware and software must be fine-
tuned. Because the ATtiny11’s built-in
RC oscillator is not accurately 1 MHz,
we replace it with the 1 MHz crystal
oscillator as shown. The speaker
needs to have good response to
audible frequencies, so we’ll choose a
2.5” 100 ohm speaker.

Since the factory has pre-
programmed the ATtiny11’s internal
“fuse bits” to select the built-in RC
oscillator, we’ll need to re-program
those in order to use an external

64 February 2006

brne LOOP1
DEC R19
brne malop
DEC R20
brne calop
RET

;——
INT0_LED2:

rept2:
cbi PORTB, 0 ; LED=ON
RCALL DLhalfS
sbi PORTB, 0 ; LED=OFF
RCALL DLhalfS
cbi PORTB, 0 ; LED=ON
RCALL DLhalfS
sbi PORTB, 0 ; LED=OFF
RCALL DLhalfS
RCALL DLhalfS
RCALL DLhalfS
RCALL DLhalfS
rjmp rept2 ; repeat again

;——

! Listing 2. The Standard 440 Hz Music
Tone Generation program.

;ATonTn11.ASM: 440 Hz Standard Music “A” tone generator
.include “TN11def.inc” ; Port definitions here
.cseg
.org 0

sbi DDRB, 1 ; config DDRB bit-1 as output
sbi DDRB, 0 ; config DDRB bit-0 as output

cbi PORTB, 0 ; LED=ON

AGAIN:
cbi PORTB, 1 ; PB1=LOW; 2us
rcall DL1132us ;
NOP ; 1us
NOP ; 1us

; 1136
; ——————— ——

sbi PORTB, 1 ; PB1=High | | |
rcall DL1132us ; ___| |______|

; 1136
rjmp AGAIN ; 2us

;———
;delay 1132us at 1 MHz

DL1132us:
LDI R20, 0 ; 1us

LOOP1:
DEC R20 ; 1us \ 3*256 = 768 us
brne LOOP1 ; 2us /

LDI R21, 119 ; 1us
LOOP2:

DEC R21 ; 1us \ 3*119 = 357 us
brne LOOP2 ; 2us /

RET ; 4us
;———
;rcall is 3us; Total delay = 1132 us

! Programming the 54¢ Micro

Listing 1 continued REFERENCE
[1] G.Y. Xu: “Play the AVR HyperTerm,”
Nuts & Volts Magazine, February 2005.

Xu-Dan.qxd 1/12/2006 6:28 PM Page 64

Figure 2.4: This assembly code listing from the February 2006 issue of Nuts and Volts
magazine is an example of the tedious and error-prone process that WCET analysis
sometimes requires. Here, the source code comments reveal how the programmer had
to compute the delay of each individual instruction and calculate the final WCET
value manually.

development of real-time systems becomes lengthy and expensive.

To combat the obvious disadvantages of the manual approach, several tools for au-

tomated WCET analysis have emerged. They perform essentially the same steps

as a human but are able to cope with much larger programs and compute the re-

sults far more quickly. Error rates are also substantially reduced, assuming of course

25

that the tool has been thoroughly tested and debugged. Perhaps the most powerful

and sophisticated of these tools is aiT [34, 35], which won a competition testing the

precision of both commercial and academic static analyzers [36]. However, even a

state-of-the-art tool like aiT has serious weaknesses. Virtually all such tools focus on

obtaining tight bounds; the speed of computing the WCET is secondary. Developers

have to interrupt their testing efforts while waiting for the tool to finish its work.

Another problem is that current tools operate at a very low level. They perform

analysis of the assembly language and then simply stop. While the tool may provide

a visualization of the results, as shown in Figure 2.5, there is no mapping from this

assembly code back to the original source code constructs of the analyzed program.

In order to understand the visualization, the user must also understand the assembly

language of the target processor. If the target processor changes, the user may have

to learn yet another assembly language. In addition, these tools are self-contained

and exist separately from the user’s source code editor, forcing a periodic switch

between source code and assembly code that hampers productivity. There is little or

no interaction between the WCET tool and the natural development environment.

These existing approaches to finding the WCET of a task are insufficient. Measure-

ment is unsafe; manual analysis is time-consuming and error-prone; and automated

analyzers are unduly low-level and lack integration with traditional programming

tools. Real-time systems are thus notorious for requiring multiple cycles of refine-

ment. After the initial design and implementation phases, there often comes a lengthy

and expensive cycle of testing, refinement, re-testing, and so on until performance is

adequate. The assumption is that with sufficient testing, the system will be both

correct and predictable, but this assumption is misleading. In the words of Steve

McConnell [37]:

26

Figure 2.5: One of the most advanced tools for automated WCET analysis is aiT.
Despite its sophistication, aiT exposes too much implementation detail, such as the
source code disassembly shown here. (Screenshot by AbsInt Angewandte Informatik
GmbH.)

Testing by itself does not improve software quality. Test results are an

indicator of quality, but in and of themselves, they don’t improve it. Try-

ing to improve software quality by increasing the amount of testing is like

27

trying to lose weight by weighing yourself more often. What you eat be-

fore you step onto the scale determines how much you will weigh, and

the software development techniques you use determine how many errors

testing will find. If you want to lose weight, don’t buy a new scale; change

your diet. If you want to improve your software, don’t test more; develop

better.

2.3 What Is Interactive Analysis?

To develop better requires a fundamental change in the way real-time systems are

constructed. Thus far, virtually all approaches to real-time system development have

been backward. The tendency is to take existing, well-understood paradigms from

the non-real-time domain, then gradually tighten and restrict them until real-time

constraints are satisfied. For example, much effort has been expended trying to shoe-

horn traditional event-based programming models, which were intended for flexibility,

not predictability, into the real-time environment. The end result is a system nearly

impossible to analyze and lacking any guarantees on timeliness. The task is somewhat

like trying to fit a square peg into a round hole.

For hard real-time systems, the opposite approach is more appropriate. Software

design methods should begin with the principle that timeliness is the prime quality.

If a system fails to respond to external events in a timely fashion, then everything

else about it—cost, functional correctness, or overall performance—matters little.

Therefore, the system should begin as a simple, predictable, completely analyzable

design and only then may it be expanded and the timing constraints relaxed in order

to meet cost and performance requirements.

28

The intent is not only to design systems that work correctly and responsively but

also to show that they indeed do, given the serious consequences of malfunctioning

hard real-time systems. Therefore, the major emphasis should be on techniques for

validation, demonstrating that the system in question has the proper timing behavior.

The end goal is to prove that it meets its temporal objectives in all circumstances.

Undoubtedly, the concept of validation is nothing new. Hard real-time systems,

especially the safety-critical variety, undergo extensive testing and analysis before

deployment. Industry standard guidelines, such as the DO-178B for avionics soft-

ware [38], include rigorous assessment procedures to ensure that a system behaves

according to its requirements. Despite these efforts, timing analysis routinely occurs

only after implementation is complete. Potential design flaws related to timing, such

as an overly high WCET, may not be revealed until well into the development cycle.

A new approach, encapsulated by the phrase interactive analysis, is a way of prevent-

ing such problems. The novelty of this approach is in making timeliness a fundamental

aspect of system design from its very inception. Instead of waiting until implementa-

tion is complete before starting timing analysis, the intent is to incorporate knowledge

of worst-case time into every facet of software development. WCET analysis must

be performed continuously and interactively from the moment the first line of code

is written.

In this sense, the interactive analysis approach is analogous to the Extreme Pro-

gramming (XP) method [39], which advocates continuous testing and integration as

opposed to a “Big Design Up Front” or a waterfall approach. The key difference

is that XP focuses on functional correctness, whereas interactive analysis centers on

temporal correctness. The premise is that temporal correctness is often harder to

achieve and verify, and therefore it should be established at the very beginning of

development and maintained throughout.

29

This philosophy can be boiled down into three basic tenets of interactive analysis:

Bug prevention over bug detection The conventional software development pro-

cess is 1) design, 2) implement, 3) test. This life cycle divorces the validation

process from the implementation phase, making it an exercise in bug detection.

In contrast, interactive analysis marries the implementation and timing analysis

into a single stage, leading to a kind of bug prevention. By incorporating static

WCET analysis into the coding process, timing bugs caused by missed deadlines

are guaranteed not to occur. (In other words, heisenbugs are transformed into

bohrbugs.) This practice of correctness-by-construction has been championed

by many researchers as a means of developing safer, cheaper, and more reliable

real-time systems through early detection and removal of timing errors [40]. As

a case in point, an avionics project reported a four-fold increase in productivity

and a ten-fold improvement in quality by adopting unambiguous programming

languages that focus on preventing bugs early rather than detecting them in a

subsequent validation step [41].

Interactivity The typical strategy for real-time system development is inherently an

open-loop control flow. There is no feedback during the implementation phase

to indicate whether the code is meeting its timing constraints. Recent studies

have criticized this state of affairs, noting that current WCET tools demand

too much manual intervention [42]. By integrating automatic WCET analysis

into the implementation process, the loop closes and development of real-time

systems becomes interactive, as shown in Figure 2.6 The intent is to give the

programmer knowledge of the worst-case time as the code is written and thereby

help to identify timing problems the moment they are created. Furthermore,

if the implementation must later change to fix a bug or add new behavior, the

impact of the change on worst-time time can be seen instantly, without having

30

Verified
program

Design

Yes
Test

functional
correctness

Is WCET
sufficiently

small?

Switch to
WCET analysis

tool
Write code

Wait for WCET
analysis results

Verified
program

Design
Test

functional
correctness

Is WCET
sufficiently

small?

Write code

Traditional Analysis

Interactive Analysis

No

Yes

No

Figure 2.6: In the traditional approach to WCET analysis, the developer’s feedback
loop is large due to the switching to and from a separate tool that may require minutes
to finish its job. Interactive analysis tightens this loop and shortens development
time by making the WCET tool much faster and integrating it into the development
environment.

to perform an additional and separate validation step.

High-level languages The same studies that noted the lack of a “one-click anal-

ysis” approach in current WCET tools also noted that these tools require too

much detailed knowledge of the analyzed code. As illustrated in Figure 2.5,

even the most advanced WCET analyzers do little to shield the developer from

the minutiae of the underlying hardware. Interactive analysis requires that

real-time software be developed entirely in modern, high-level, mainstream lan-

guages. The current practice of implementing real-time systems in low-level

languages, such as assembly code and C, is inefficient and unscalable. Newer

languages, such as Java and C#, were designed for programmer productivity

while also offering safety features, most notably stricter type checking, that

simplify validation of real-time systems. These languages are more suitable for

the goals of interactive analysis.

These ideas are essentially a synthesis of prior research in the real-time computing

arena. Specifically, their genesis was inspired by the work of four individuals:

K.H. (Kane) Kim The TMO programming scheme, which Kim invented, shares

31

many of the goals of interactive analysis. In particular, TMO relies on knowing

WCET for event triggering, and it makes ease of analysis a prime consideration.

In addition, it addresses design-time guarantees of timeliness, corresponding to

the interactive analysis mantra of bug prevention over bug detection. It is also

object-oriented and based primarily on C++, which is in line with the high-level

language requirement in interactive analysis. In fact, the greatest motivation for

interactive analysis came from one of Kim’s aphorisms: “The difference between

an amateur and a professional real-time programmer is this: The amateur says,

‘I’m convinced my system is real-time.’ The professional says, ‘I guarantee my

system is real-time.’ ”

Hermann Kopetz As the creator of the Time-Triggered Architecture (TTA) [43],

Kopetz is an advocate of guaranteed timeliness in real-time systems by means of

precise specification. The TTA approach requires that all interactions between

distributed components be fully specified, not only in the functional domain

but in the temporal domain as well. This concept, which makes the notion of

time a crucial ingredient of the system, is tantamount to the idea of interactive

analysis. In addition, Kopetz’s book, Real-Time Systems: Design Principles for

Distributed Embedded Applications [6], stressed the importance of global time,

time-triggered protocols, and similar concepts that guided the formation of this

work.

Edward A. Lee A strange reality in computing is that the underlying electronic

hardware of digital logic delivers precise timing accuracy, while the overlaying

software abstractions discard it. The Alan Turing model, which forms the basis

of nearly all computers and programming languages, makes time irrelevant. It

does not exist in the semantics of programs, and one must step outside the

language to specify timing. Timing then becomes a consequence of implemen-

32

tation and not a property of design. The resulting systems are brittle; small

changes have big consequences; and porting real-time code to new platforms

requires a redesign. In making these observations, Lee suggests that the fun-

damental model of computing needs to be reinvented [44]. For example, the

formal definition of computing is currently stated as:

f : {0, 1}∗ → {0, 1}∗

In other words, computing is in essence a function that transforms a sequence

of bits into some other sequence of bits. Lee proposes changing this formula to

the following:

f : [T → {0, 1}∗]P → [T → {0, 1}∗]P

Here, the function is still transforming a sequence of bits, but it is doing so

within a specific period of time. Lee notes that altering the model impacts nearly

every layer of computing, but such a revolution is necessary when computation

must be absolutely, positively on time. The notion of interactive analysis, which

shares the same goal of elevating time to the level of the programmer’s model,

is one of many ideas that may help make this transformation possible.

Peter Puschner Perhaps the most prolific author on the problem of worst-case

execution time, Puschner has a long history in WCET research. His contri-

butions include not only scientific advancements, such as linear programming

techniques [45], but also position papers that help debunk myths [46] and ex-

plain why the industry has been slow to adopt WCET analysis [47]. More

recently, Puschner has been promoting WCET-oriented programming, a general

technique for rewriting an algorithm to improve its worst-case running time [48].

For example, the standard bubblesort algorithm can be rewritten to avoid in-

put data dependencies and always execute the full number of loop iterations.

Although the resulting algorithm will look quite unconventional and likely will

33

not perform as well overall, it will keep the WCET tight.

Interactive analysis is both a refinement and extension of this idea. Whereas

WCET-oriented programming is a manual strategy for algorithm design, inter-

active analysis offers an automated, systematic approach for achieving similar

goals. Both techniques recognize the inherent weaknesses in static analysis,

such as overly pessimistic estimates of WCET, but they differ in how to handle

them. Interactive analysis puts the human operator “in the loop” so that poten-

tial WCET problems can be identified and acted upon, while WCET-oriented

programming seeks to avoid the problems entirely.

To be sure, the goal of interactive analysis is both challenging and ambitious. With

static analysis, the predicted WCET can be thousands of times larger than actual

worst-case time. It computes only the upper bounds for WCET, not necessarily the

exact WCET, and thus it can be overly conservative. Yet this drawback only under-

lines the need to integrate time into the development cycle. Just as object-oriented

programming demanded a sacrifice in performance in exchange for easier mainte-

nance, interactive analysis also impacts average-case performance, but in return it

provides strong guarantees that a system will behave as expected. This should be a

welcome change for real-time programmers who traditionally have no peace of mind

as they worry whether their code will meet its deadlines:

When I worked with microcontrollers (fairly hefty ones), in actual practice

I never lost any sleep over pointer correctness. However, I did sweat bullets

over real-time response in my nested interrupt handlers.3

3Excerpted from an online discussion of the tradeoffs involved in programming language design:
http://it.slashdot.org/comments.pl?sid=209924&cid=17110228

34

http://it.slashdot.org/comments.pl?sid=209924&cid=17110228

2.4 Research Objectives and Contributions

Research papers describing computer systems and tools often exhibit a disconnect

between what is proposed and what has been implemented. This is unfortunate, given

that an implementation provides compelling evidence that the design of a complex

tool or system is valid. Some papers do not even claim an implementation at all,

and those that do may not provide source code for study and enhancement by other

researchers.

Conversely, all of the ideas and techniques proposed in this dissertation have been

implemented, at least at an experimental or prototype level. The intent is to show

the viability of the interactive analysis approach. Specifically, the source code for this

implementation has been pooled into a software project called Volta.4 Every line of

code in Volta is published under an open-source license, inviting critical comparison

and making the reported experiments repeatable.5 The suite of tools in Volta are

built in a modular, extensible fashion to facilitate future research.

Volta is a substantial contribution because it demonstrates a novel end-to-end tech-

nique for constructing analyzable real-time systems with guaranteed predictability.

Its techniques have the potential to become a standard part of the real-time devel-

oper’s toolbox. Volta can also serve as an educational tool due to its ability to op-

erate entirely within the implementation language, shielding students from low-level

details such as assembly code. It thus lowers the barrier of entry for novice real-time

developers, many of whom are unaware of the need for static analysis. As others

have noted [49], academia should integrate tools like Volta into the curriculum so

that students of today—and ultimately the real-time system engineers of tomorrow—

understand the benefits of guaranteed worst-case execution time.

4Named after the lake in Ghana, not the physicist from Italy.
5Volta is available online at http://volta.sourceforge.net/

35

http://volta.sourceforge.net/

Most research projects must make certain simplifying assumptions in order to achieve

their objectives, and the Volta tools are no different. To meet the goals of interactive

analysis, the following statements about real-time developers are assumed to be true:

• They are more concerned with guarantees on worst-case execution time than

with the average performance of the system. In other words, they would rather

choose a factor of ten slowdown in all operations than a factor of one hundred

slowdown that happens very rarely but at unpredictable moments.

• They are willing to deploy the system exclusively on specialized hardware.

• They are willing to implement the entire system in a single language.

• They are unconcerned with code size, power consumption, and other non-

temporal aspects of the system.

While future enhancements to the Volta suite may relax these requirements, in their

current form they may seem exceedingly strict, particularly the need for special hard-

ware. In the closed environment of a tightly controlled real-time system, however,

such assumptions are realistic. They provide a reasonable tradeoff between analysis

results and analysis efforts. By making these assumptions, Volta helps developers

guarantee the predictability of real-time programs, which is at least as important as

helping them run quickly.

The following chapters explain the elements of Volta and how it enables interactive

analysis. This is a tricky task, given that the architecture of Volta is somewhat com-

plex because it touches so many areas of computing: processor instructions, control

flow analysis, scheduling, shared libraries, and more. In contrast, traditional research

in real-time systems (see Figure 2.7) tends to focus on one particular aspect with

little or no attempt at integration with other research. Volta is different in that

36

Real-time garbage collection

WCET analysis

Scheduling algorithms

Real-time middleware

Architectural modeling (e.g., RT-UML)

Processor modeling

Cache analysis

Abstract interpretation

Hardware-assisted monitoring

High-precision clock synchronization

Safety-critical specifications

Hardware-centric
solutions

Low-level techniques

Operating systems

High-level components

Development environments

Figure 2.7: Research in real-time systems tends toward stratification, as indicated by
the rings of this diagram. (Larger rings indicate higher-level techniques.) Solutions
are often proposed, implemented, and verified in isolation with little or no regard to
integration with other solutions. In contrast, the Volta project fills the gaps between
the separate layers, merging them into an integrated platform for interactive analysis,
as illustrated in Figure 2.8.

it integrates a vertical stack of abstractions tied together by the common theme of

interactive analysis. Each layer builds upon the services provided by the one under-

neath, as shown in Figure 2.8. The job of each layer is to simplify the design and

construction of the layer above it without sacrificing hard real-time predictability.

To explain Volta more clearly, each chapter is dedicated to one specific layer of the

Volta stack. Their order proceeds in a bottom-up fashion, starting with the fun-

damental hardware and software requirements in Chapter 3. Chapter 4 focuses on

control flow analysis, and Chapters 5 and 6 show how the control flow is traversed to

compute worst-case execution time. Chapter 7 continues the journey upward along

the Volta stack by showing how shared libraries can be made interactively analyzable

37

Java processors

WCET analysis

Control flow analysis

Shared libraries

Task scheduling

Run-time
monitoring

future work

future work

Chapter 7

Chapters 5 and 6

Chapter 4

Chapter 3

Increasing abstraction

Figure 2.8: The remaining chapters explain the Volta project in a bottom-up fash-
ion, starting with the low-level hardware assumptions and ending with a real-world
example of interactive analysis.

for WCET.

In future work that is planned but not complete, Volta will include an interactive

WCET-aware static scheduler, as well as facilities for run-time observation of real-

time systems in a non-intrusive way.

38

Chapter 3

Hardware and Software

Requirements for Interactive

Analysis

Given the potential benefits of interactive analysis, the essential question is why

this paradigm is not already commonplace despite two decades of research in worst-

case execution time. One explanation comes from Kirner and Puschner [46], who

argue that industrial-strength WCET tools are simply too difficult to implement,

largely due to the increasing complexity of modern processors. For example, branch

prediction hardware normally results in a fast and efficient processor pipeline, but

when a prediction misses, the pipeline stalls. The result is a huge variance between

optimal and worst-case performance.

Handling this kind of variance demands one of two approaches: an extremely compli-

cated WCET analysis tool (including data flow analysis and a complete model of the

pipeline) or a very conservative WCET bound that cripples the performance of the

39

system. Both options are unattractive to industry, leading to a neglect of the proper

WCET analysis that is necessary for safe and reliable real-time systems.

As a compromise, current WCET tools expose the underlying complexities of a given

hardware architecture. They routinely ignore high-level source code altogether, oper-

ating only at the machine code level. Mapping this machine code back to the original

source code—a fundamental requirement of interactive analysis—is typically a cum-

bersome and unintuitive manual process. The aiT tool [35], for instance, displays its

analysis results in assembly language, leaving the programmer to mentally map the

jumble of mnemonics and hexadecimal numbers back to the source code language of

choice.

While these problems may ultimately be unavoidable given the intricacies of modern

hardware, this does not mean interactive analysis can never become a reality. To

overcome the current limitations and bring about a new generation of interactive

analysis tools, certain restrictions in the hardware and software foundations of a real-

time system can be adopted. Making a few realistic, carefully chosen assumptions

about the system’s implementation can transform interactive analysis into a tractable

goal.

3.1 The Trouble with C

The first step is to abandon the conventional wisdom that real-time systems must be

programmed in C. Today, this language is still the predominant choice for hard real-

time systems [50], not only in legacy code but in new projects as well. For example, the

designers of Boeing’s Unmanned Little Bird, a nascent research project for developing

autonomous unmanned helicopter control, chose C for all of the project’s in-the-air

40

Java bytecode

Control flow analysis

WCET analysis

End-user tool

In
c
re

a
si

n
g
 l
e
v
e
l
o
f

a
b
st

ra
c
ti

o
n

Java processors

Focus of this chapter

Figure 3.1: To reduce complexity to a manageable level, interactive analysis requires
breaking down WCET analysis into the layers of abstraction shown here. At the
foundation lies the simplifying assumption of a Java processor running Java bytecode,
which is the focus of this chapter.

code [51]. Boeing is not alone; 68% of embedded systems developers are also using

C [52].

At first glance, the reasons for choosing C are clear. It offers several desirable char-

acteristics for real-time applications:

• Code portability and efficiency

• Ability to access specific hardware addresses

• Low runtime demand on system resources

These features give C a degree of control over the performance and timeliness of the

system that is unmatched by almost any other language. In exchange for this control,

however, C sacrifices a vital criterion for interactivity: ease of analysis. C is simply a

poor choice when it comes to ensuring correctness.

The problem can be traced back to the birth of C in 1972. As the popularity of

41

the language grew, so too did the number of C compilers, each of which parsed C

constructs in slightly different—and sometimes contradictory—ways. Subsequent ef-

forts to standardize the language focused more on allowing compatibility across these

compilers than on limiting the number of ways to interpret a given C expression. As

a result, even the most recent C standards documents often surrender to the phrase

“undefined behavior,” a reconciliation in deciding how to interpret the numerous cor-

ner cases of the language. While this approach helped cement the popularity of C,

it also hindered the ability of static analysis to verify the language’s semantics. As

Dennis Ritchie, co-inventor of C, would later remark: “C is quirky, flawed, and an

enormous success.” [53]

This is not to say that writing time-critical code in C is impossible. With good

habits and due diligence, experienced programmers can produce high-quality real-

time systems in C. The trouble arises when trying to verify the timeliness of these

systems. (Even the most experienced programmers make mistakes.) Yet many of C’s

fundamental features, such as pointer aliasing and global variables, make static anal-

ysis excessively difficult. In addition, certain ancillary features of the language—

pre-compiled headers, pre-processor directives, inline assembly code, and so on—

complicate the verification process even further. Vendors of static analysis tools have

been known to swap war stories of battles against the sheer number of unusual ex-

tensions and flavors of the various C compilers [54]. A quote attributed to Bill Joy,

co-founder of Sun Microsystems, sums it up best:

You can’t prove anything about a program written in C. It’s really just

Peek and Poke with some syntactic sugar.

The loose specification of the C language is not the only obstacle. The lack of a

standard intermediate representation (IR) is another reason for the absence of inter-

42

active analysis in modern tools. Because C compilers vary, there is no common IR

for static analysis tools to target. GCC’s Register Transfer Language, for example, is

incompatible with the Intel compiler’s IR. Furthermore, these IRs may change across

compiler versions; they may suffer from limited documentation (if any); and they are

subject to change with each new compiler version.

This changing nature of IR magnifies the difficulty of building analysis tools. Because

there is no clean, consistent separation between high-level source code and low-level

machine code, the tools must be able to perform a complete top-to-bottom analysis.

This includes parsing source code, constructing a control flow graph, mapping the

basic blocks to machine code, analyzing each basic block according to a model of the

target processor, and so on.

In short, while there is no formal proof that C is inadequate for implementing hard

real-time systems, there is an abundance of circumstantial and anecdotal evidence.

One of the more telling clues is the remarkable proportion to which legal C code can

be obfuscated. Of course, code in any language can be obfuscated, but the severity

and ease at which C can be twisted is unique, as proven each year by Binghamton

University’s Underhanded C Contest and the International Obfuscated C Code Con-

test. Even practical constructs such as Duff’s Device are disturbing when considering

their possible presence in safety-critical systems. Verifying the correctness and timeli-

ness of a language that allows such expressions requires colossal effort and sometimes

may not even be possible. Indeed, some experts claim with a mixture of sincerity

and levity that C is not a “human-readable” language at all. As noted by Bertrand

Meyer [55]:

The belief is still widespread, in the computing community, that C and its

derivatives are programming languages—languages intended for people to

43

write programs in. This is a regrettable misunderstanding, as anyone who

has looked at the syntax of C will testify. C use by humans is problematic

at any speed.

One of the unnamed derivatives to which Meyer refers is C++, a direct descendant

of C and an increasingly popular choice for programming real-time systems. For in-

stance, C++ is the basis of real-time middleware research projects such as TMO [28]

and TAO [56]. But because C++ is a superset of C, it shares many of its parent’s

problems. In fact, the additional features of C++, including exception handling, poly-

morphism, and operator overloading, make analysis and verification of this language

even more challenging. In the words of its creator, Bjarne Stroustrup [57]:

C makes it easy to shoot yourself in the foot; C++ makes it harder, but

when you do it blows your whole leg off.

3.2 Java as a Catalyst

All of these complications, at both the hardware and software levels, combine to make

WCET analysis tools complex, non-portable, and difficult to implement and to use.

It is no wonder, then, that the industry has been slow to adopt the idea of WCET

analysis. This situation has led developers, as well as researchers in the WCET field,

to seek a better platform on which to build real-time systems and tools.

The platform that an increasing number of developers and researchers are turning to

is Java. This much newer language offers direct benefits over C and C++: Compilers

for Java catch many errors that C compilers miss; the language definition specifically

addresses safety and security issues; and the high-level nature of Java makes it more

44

productive, maintainable, and portable than C [58].

Java of course is not magical, but it has the virtue of about twenty-five years of

research and technology advancements. When C first appeared, networking hardly

existed. Object-oriented programming was unknown. Systems with a few dozen

kilobytes of memory were considered large. All this changed by the time Java emerged.

Overall, Java is a simpler language than C, and simplicity, as the renowned computer

scientist C.A.R. Hoare would say, is a prerequisite for reliability [59].

In particular, Java offers the following advantages over C and, to a lesser extent,

C++:

Productivity Real-time systems are becoming increasingly complex and widespread.

To keep up with the growing demand for these sophisticated systems, developers

need to become more productive, and Java is recognized as a more productive

language than C. A recent experiment by Nortel Networks found that program-

mer productivity doubled after switching to real-time Java [60]. In another

case, Intel used Java to develop a fault-tolerant real-time distributed computing

demonstration, claiming that the same project would have taken three months

had C been used instead [61]. Java’s object-oriented underpinnings also make

it more maintainable and reusable than the flat procedural paradigm of C, es-

pecially in the context of large systems.

Training Technical aspects are not the only consideration when choosing Java for

real-time systems. The state of the workforce should also be taken into account.

With Java now the dominant language in university computer science curricula,

most graduating software engineers are experts in Java, not C. This change of

skills in the workforce is one reason why Java eclipsed C in 2001 and C++

in 2004 as the most popular language for desktop and enterprise software [62].

45

In the real-time and embedded space, developers are more conservative and

adopt new languages more slowly, but there is an historical trend of desktop

technologies migrating to embedded systems within five to seven years [50].

Unless Java can be incorporated into the development process for real-time

systems, the industry will have tremendous difficulty leveraging the skills of the

coming generation of software engineers.

Portability The innate portability of Java, which allows applications to run on a

variety of hardware platforms with little or no change, is often cited as a primary

advantage for general-purpose desktop software, but it is even more beneficial

for real-time systems. Such systems are often deployed onto a diverse assortment

of embedded devices with widely varying processors and instruction sets. The

ability of Java to adapt readily to newer and more powerful processors, as well

as to smaller processors that are less expensive and more efficient, is a distinct

advantage. Many of the portability headaches from lower-level languages, such

as special-purpose cross compilers and incompatible binary interfaces, are absent

in Java. In addition, portability allows rapid prototyping on standard desktop

workstations—even before the real-time system’s hardware has been chosen—

while still providing a clear path to deployment on the target device. This

portability is often cited as the reason embedded real-time developers claim Java

is roughly twice as productive as C++ during development of new functionality

and five times less costly for maintenance and integration efforts [61].

Tool and library support One of the criticisms leveled at C is its profusion of

non-standard add-on packages for serial and network I/O, forcing developers to

re-learn different APIs for identical needs. In contrast, Java has had a consistent

set of APIs for networking, as well as many other common tasks, since day one.

It also includes built-in support for source code annotations, which are a key

46

0%

10%

20%

30%

40%

38%

30% 29%

21% 19% 18% 18%

Top Seven Stated Reasons for Java

Reduced development costs
Availability of open-source modules
Faster development
Availability of qualified developers
Improved software reuse
Increased system functionality
Reduced maintenance costs

Figure 3.2: A 2005 survey asked 108 companies why they were moving embedded sys-
tems projects to Java [61]. Faster and cheaper development, as well as the availability
of open-source code, were the most highly cited factors.

component of static analysis for interactivity, as described in Section 6.4.2. As

a result of this stable API, there is now a thriving community of open-source

and free Java software, most of which will compile and run on any platform

without modification. A recent survey, illustrated in Figure 3.2, indicated that

this availability of open-source tools and libraries was one of the top reasons

embedded developers are switching to Java.

Data encapsulation Decades after their invention, object-oriented techniques still

have a reputation among embedded and real-time system engineers as being syn-

onymous with code bloat and sluggish performance. In recent years, however,

these suspicions are being torn down by case studies that reveal less tangible

benefits of object-oriented programming (OOP). An experiment in real-time

flight instrument software, for instance, concluded that OOP greatly simplified

communication between system and hardware engineers [63]. Both groups tend

not to think in terms of function call hierarchies but in system components

and their interactions: features naturally described using OOP techniques. The

data encapsulation provided by OOP also encourages hiding platform details

within platform-independent interfaces, which in turn enables easier debugging

47

and testing. Furthermore, the data hiding enforced by Java makes the job of

WCET analysis easier, particularly for data flow analysis, because the number

of live objects in a given state is substantially reduced.

Modularity Java’s native instruction set, known as bytecode, provides an inherent

modularization of static analysis tasks, as illustrated in Figure 3.3. For exam-

ple, high-level WCET tools for Java can ignore any timing aspects below the

bytecode level. Separate low-level tools, perhaps written by an entirely dif-

ferent team of programmers, can then complete the analysis once the target

architecture is known. This clean separation between high- and low-level anal-

ysis helps solve the software complexity problem raised in Chapter 2. Bytecode

also acts as a common, well-specified intermediate representation that does not

vary with different compiler versions and vendors, unlike the situation with C.

WCET analysis tools can standardize on this common IR, allowing for their

interoperability [64].

In spite of these advantages, arguing that Java is better than C may be like arguing

that grasshoppers taste better than tree bark.1 Bruce Boyes, founder of embedded

Java provider Systronix, notes that Java is certainly not a panacea for all program-

ming problems [65]:

Sloppy programmers can circumvent many of Java’s safety features and

write bad code in Java. The programmer is still the most important link in

the software development chain (and it’s unlikely that any computer lan-

guage or development tool will ever completely replace the human brain).

Indeed, Java appears at first glance to be a terrible match for real-time systems. Its

1This delicious analogy comes from a post by Thant Tessman to the comp.lang.lisp Usenet group
on June 15, 2000.

48

High-level analysis

Processor
timing
model

Java source
code with

annotations

Final WCET value

Compilation

Control flow graph
construction

Derivation of loop
bounds

Low-level analysis

Cache analysis

Collapse of basic blocks

Collapse of the CFG

Bytecode level and above

Below bytecode level

Begin WCET analysis

Figure 3.3: This sketch of the WCET analysis process shows the clean separation
between high- and low-level analysis that Java bytecode provides. With bytecode as
a common intermediate representation, the two levels become independent: High-level
analysis can ignore the CPU timing model, while low-level analysis need not construct
a CFG or parse annotations. This separation of tasks makes WCET analysis tools
simpler, more modular, and more interoperable.

49

combination of automatic garbage collection, underspecified threading semantics, and

the complexities of object-orientation are all impediments to building time-predictable

software. Certain run-time characteristics of Java, such as a high frequency of method

invocation and dynamic loading, make Java more difficult than other languages for

conducting WCET analysis. In particular, dynamic dispatch—the mechanism upon

which OOP is based—is still very much an open problem. Although prior work has

confronted the issue [66, 67], it remains unsolved for the case of arbitrary object-

oriented code.

Java can also be a voracious consumer of memory compared to C, and it is often

criticized as being slow and inefficient. Java does indeed take more CPU cycles to

execute the average line of code than C, but the extra overhead can be justified by

other benefits that Java offers. As a real-time system grows in size and complexity,

raw throughput tends to be less important than overall productivity and maintenance

issues, both of which are Java’s strengths. One must also consider that C has none

of Java’s built-in safety features, such as exception handling, array bounds checking,

and automatic memory management. If C incorporated these features, much of its

speed advantage would evaporate.

Furthermore, Java compilers, interpreters, and virtual machines have closed the per-

formance gap in recent years. Well-written Java code running on an adaptive opti-

mizing engine such as HotSpot [68] can now outperform C in some instances. When

comparing C++, the performance difference virtually disappears, especially for large,

complex applications. Garbage collection preemption latencies have been reduced to

100 microseconds or less [61], closing the gap even further. While there are still cases

where memory and execution constraints may prevent the use of Java, such as very

small embedded systems, this is the exception rather than the rule.

To be sure, hard real-time and safety-critical applications may not yet be ready to

50

jump to Java. For that to happen, Java must prove itself in rigorous implementations

that meet the demands of mission-critical applications. Much research still remains,

and new analysis techniques must be devised. Existing analysis tools will have to be

rewritten for Java, as many are currently grounded in C.

Despite these obstacles, Java has the potential to provide safer, cleaner, and higher-

quality real-time software. It is not merely a newer language; it is an enabler. It

enables new ways of developing and analyzing code that were not possible before.

The common theme here is that Java offers a higher level of abstraction, a crucial

ingredient for reducing the complexity of real-time systems to a point where tem-

poral analysis becomes viable and effective. Java is therefore a catalyst in making

interactive analysis possible.

3.3 Java in Real-Time Systems

For a language that offers no temporal guarantees and is designed to be dynamic,

positioning Java as a solution to real-time programming problems is counter-intuitive.

Its many sources of unpredictability—garbage collection, dynamic class loading, just-

in-time compilation, and more—inhabit the worst nightmares of real-time developers.

The phrase “real-time Java” may even sound like an oxymoron, yet it continues to

gain traction among researchers looking for new solutions to old real-time problems.

The renewed interest in Java for real-time systems is less surprising when examining

its history. When it was first released by Sun Microsystems in 1995, it had already

undergone considerable evolution as an embedded programming language, originally

targeted toward set-top boxes for interactive television [69]. By the time of its release,

the exploding popularity of the Internet prompted Sun to reposition Java as a tech-

51

nology for interactive web sites. Its relevance to embedded and real-time applications

was momentarily lost.

Not long after Java’s release, however, computer science professor Kelvin Nilsen pub-

lished two influential papers outlining Java’s potential benefits to real-time program-

ming [70, 71]. The positive response to these publications revealed pent-up demand

for the capabilities described in the papers [69], prompting Sun to launch an initia-

tive in 1998 to make Java suitable for real-time systems. This effort resulted in a

draft of the Real-Time Specification for Java (RTSJ) [72], a formal document that

proposed dozens of new interfaces and behavioral specifications to make Java more

time-predictable.

Then, in the year 2000, three near-simultaneous events seemed to open the floodgates

for real-time Java: In May, the final draft of the RTSJ was released. In June, the first

paper on applying Java to the problem of WCET analysis was published [64]. And in

November, the first processor designed specifically for embedded and real-time Java,

the aJ-100 [73], became commercially available.

In the years since these innovations, Java has become a viable platform for real-time

systems [74]. Commercial implementations of the RTSJ are available from aicas [75]

and Sun [76], while open-source projects such as jRate [77] and OVM [78] have shown

promise. Real-time garbage collectors, such as Metronome [79], are also gaining

steam. Java is currently an immature but increasingly credible platform in the real-

time arena, as indicated by the growing number of prototype applications and new

development projects. Examples include:

• Researchers at Lund University created a real-time control system in Java for

the FlexPicker (see Figure 3.4), a three-armed industrial robot [80]. Java han-

dles the feedback control loop of reading the state of the motors, calculating

52

Figure 3.4: The FlexPicker, a three-armed industrial robot for pick-and-place oper-
ations, served as an experimental platform for real-time Java threads. (Photograph
by The ABB Group.)

new positions, and sending new position commands one thousand times each

second. Because FlexPicker is capable of accelerating at 10 g, the system is truly

hard real-time: A timing error could spew carbon fiber everywhere, damaging

equipment and possibly harming the operator.

• The United States Navy has been one of the earliest adopters of real-time Java

technology. Lockheed Martin, for example, chose Java to handle the predictable

performance aspects of the Aegis Weapons System, a ship-to-ship network for

tracking and destroying enemy targets [50]. The U.S. Navy is also incorporating

real-time Java into DDG 1000, a suite of middleware and infrastructure services

for powering the next generation of battleships [81].

• The telecommunications industry is embracing Java for real-time applications.

Nortel Networks has one million lines of Java code operating SONET fiber

switch line cards, the protocols for which have strict 40-millisecond timing con-

straints [61]. In another case, L-3 Communications selected Java for a real-time

data acquisition system [82].

53

Figure 3.5: This quad-rotor helicopter was custom-built for experimenting with real-
time garbage collection in Java. (Photograph by the Computational Systems Group
at the University of Salzburg.)

• Java is also a popular choice for powering unmanned aerial vehicle prototypes.

In the JAviator project, a real-time garbage collector for Java ensures that the

gyroscopes, accelerometers, and ultrasonic sensors on a quad-rotor autonomous

helicopter (see Figure 3.5) are polled at just the right frequencies to keep it in

the air [83]. In a similar project, Perrone Robotics created a Java-powered heli-

copter that can fly autonomously and map the terrain below in 3D using a laser

rangefinder [84]. Boeing is also using real-time Java to build semi-autonomous

drones for the military, such as the ScanEagle airplane (see Figure 3.6) for battle

damage assessment [78].

• Java is not only helping unmanned vehicles fly through the air; it also guides

them through the sea. SONIA, shown in Figure 3.7, is a Java-powered au-

tonomous underwater vehicle (AUV) designed for inspecting ocean pipelines,

detecting mines, and performing other aquatic tasks [85].2

• General-purpose robotics is another industry where Java uptake is increasing.

National Oilwell Varco is using a Java-based real-time control system to manage

2The student group that created SONIA entered their creation in an annual AUV competition
and finished in last place in each of their first four years. After switching from C to Java for SONIA’s
controller implementation, the group finished in either second or third place out of about twenty
other contestants for the next four years. The group credits the move to Java as a key factor in
their turnaround.

54

Figure 3.6: For the ScanEagle, a long-endurance UAV designed for ground surveil-
lance, Boeing installed real-time Java software on the plane to perform autonomous
route planning and navigation. (Left photograph by Insitu Inc.; right photograph by
Airman First Class Jonathan Snyder of the United States Air Force.)

Figure 3.7: With the exception of the vision system, every component in the SONIA
AUV is written in Java. (Diagram provided by the University of Quebec’s École de
technologie supérieure.)

55

automated robotic drilling [86]. The grass-roots robotics community is embrac-

ing Java, too, as evidenced by the many open-source projects available for motor

control, haptics interfaces, image recognition, and so on.3

• In a seemingly mundane but nonetheless vital application, Java is powering

traffic lights across Europe. Signalbau Huber, a vendor of city-wide traffic

management systems, is porting its flagship controller software to real-time

Java. A safety-critical control program specific to each intersection will enable

engineers to program light behavior in Java [87].

Some of these projects rely on implementations of the RTSJ, while others use Aonix

PERC, a proprietary subset of the RTSJ that extracts its real-time essence and

adds some additional features geared toward safety certification requirements. Like

the RTSJ, it provides ways of avoiding high-latency garbage collection, tightens the

threading model to support real-time scheduling, and adds features commonly needed

for embedded devices, such as direct access to memory. Both approaches sacrifice

some degree of portability in exchange for these features, downgrading Java’s “Write

Once, Run Anywhere” mantra to “Write Once Carefully, Run Anywhere Condition-

ally.” (This phrase was coined by Paul Bowman at a 1999 meeting of the Real-Time

for Java Expert Group.)

Nonetheless, the Real-Time Specification for Java is itself a remarkable achievement,

taken as a whole. Arguably the most successful attempt so far to adapt a modern

high-level language to current and future real-time issues, it has encouraged many

developers to consider Java for systems previously built only with C/C++, Ada, or

assembly language. The general consensus among academic researchers and industry

practitioners alike is that current RTSJ implementations are mature enough to be

3See http://community.java.net/projects/community/robotics for a collection of
community-supported robotics source code written in Java.

56

http://community.java.net/projects/community/robotics

used in production systems [88], at least for non-safety-critical scenarios like stock

trading and investment banking. In these soft real-time applications, most problems

arise solely due to the lack of real-time support [89], considering that an unplanned

two-second stop for garbage collection can cause a loss of tens of thousands of dollars.

For hard real-time applications, however, the RTSJ is only a partial solution. It leaves

many important issues unaddressed, and developers of hard real-time systems who

are banking on the RTSJ to meet their needs will face serious obstacles. Specifically,

it offers virtually no support for computing the worst-case execution time of a task,

and without knowing the WCET, no guarantees can be made on the timeliness of the

system. The RTSJ’s only provision is in its scheduler interface—the ReleaseParame-

ters class—which takes as input the WCET of a schedulable object. But even this

basic support may be useless in practice, as evidenced by the documentation note

accompanying the class:

Cost measurement and enforcement is an optional facility for implemen-

tations of the RTSJ.

Because this facility is optional, many implementations choose to ignore it, thereby

discarding an essential requirement of hard real-time and safety-critical systems.

Thus, in spite of the deterministic scheduling, priority inversion avoidance, and pre-

dictable memory allocation of the RTSJ, it is simply not a hard real-time specification

and was never intended for safety-critical applications.

Furthermore, the RTSJ is rather broad in scope, attempting to anticipate a vari-

ety of real-time scenarios and meet the needs of the largest possible cross-section

of developers. As a result, implementations of the RTSJ tend to be very large and

resource-hungry. The current version of the Sun Java Real-Time System [90], for in-

stance, a popular commercial implementation of the RTSJ, requires at minimum an

57

UltraSparc III processor and 512 MB of RAM. For embedded real-time applications

where processing power and memory are at a premium, the RTSJ is simply infeasible.

3.4 Java Microprocessors

A primary reason for the lack of a WCET analysis facility in the RTSJ, as well as other

real-time frameworks, is the modern microprocessor. Architectural advancements in

processor design—long pipelines, branch prediction, and complex multi-level caches—

have focused on making the average case as fast as possible. Unfortunately, the

shrinking of this average has not come without cost. While average execution time

may be low, its standard deviation has grown large, resulting in large worst-case

times. In the best case, everything proceeds smoothly: Caches are hit, operands are

ready, functional units are free, branches are correctly predicted. But in the worst

case, everything goes wrong: Memory loads miss the cache, functional units are busy,

operands are still percolating through the pipeline, and branches are mispredicted.

The span between these two cases may be several hundred cycles or, for a deep-

level cache miss, many thousand. Even older and simpler processor designs, such

as the 16-bit 80188 with its prefetch queue and two-stage pipeline, can cause major

complications for WCET analysis [91].

Theoretically, a highly sophisticated WCET analyzer may be able to follow the flow

of data through the CPU pipeline and predict when the worst-case occurs and when

it does not, but this is a formidable task that is still an open area of research and

virtually impossible in practice. Instead, static WCET analysis generally assumes

that the worst case could occur on any given instruction, leading to hugely pessimistic

worst-case time estimates. While some attempts have been made to mitigate this

problem through a hybrid of static and dynamic analysis [92, 93], these approaches

58

are statistical in nature and provide no guarantee that the worst case will ever be

tested.

In recent years, an alternative solution for dealing with over-estimation in WCET

analysis has emerged. Rather than fight the increasingly hard-to-predict behavior

of real-time operating systems, Java virtual machines, and modern superscalar pro-

cessors, this new strategy simply eliminates them entirely. The approach relies on

specialized processors that understand Java bytecode as their native instruction set.4

These processors offer several genuine advantages for hard real-time systems:

Easier analysis By far the most important benefit of Java processors is their pre-

dictability. Running bytecode directly on the processor eliminates the need for

virtual machines and just-in-time compilation, making execution time far less

variable. Java’s stack addressing scheme also helps reduce variability. The re-

strictions of the stack allow the CISC-style bytecodes of Java to be translated

into RISC-style microcode that executes in a short pipeline (often just three or

four stages), mitigating the need for branch prediction and the uncertainty it

would introduce. Most bytecodes also have a best-case execution time that is

identical to their worst-case execution time, without any pipeline dependencies

between them, making low-level analysis of basic blocks as easy as summing

the WCET of each bytecode. Cache analysis is simpler, as well. Jump in-

structions in Java are guaranteed never to target beyond the address range of

the declaring method; therefore, a method-based cache [95] can ensure that ev-

ery non-invocation and non-return instruction is a cache hit, vastly simplifying

the timing analysis. Taken together, these characteristics yield a much tighter

4Strictly speaking, this approach is not limited to Java. It could be applied to C# or similar high-
level, bytecode-based languages, assuming that the corresponding hardware—a “C# microprocessor”
for example—is available. Some progress has already been made in this direction [94]. Without loss
of generality, however, this work considers only Java-based processors, which are relatively mature
and widely available.

59

1000

1200

1400

1600

1800

S
o

rt
in

g
 t

im
e

 (
c
lo

c
k

 c
y
c
le

s)

All possible permutations of element ordering

Figure 3.8: In an experiment by Schoeberl on a Java processor, the results of which
are replicated in this figure, the worst-case execution times of the canonical bubble-
sort algorithm were measured for each possible permutation of five elements [96]. A
manual WCET analysis of the algorithm had predicted a worst-case time of 1,799 cy-
cles, and the measured result, as shown in the graph above, was exactly the same—an
optimal pessimism ratio of 0%. Analysis with general-purpose CPUs rarely achieves
such a low ratio.

bound when performing static WCET analysis, as illustrated in Figure 3.8.

Speed and efficiency Recent surveys indicate that perceptions persist of Java be-

ing too big and too slow to meet real-time constraints [50]. The overhead

introduced by the operating system and virtual machine not only hinders per-

formance but also devours precious memory. Java processors, on the other hand,

eliminate the need for an OS and VM, greatly reducing the memory require-

ments of the system. For example, current versions of the Sun Java Real-Time

System require 512 MB of RAM, while a Java processor implemented on an

FPGA requires 4 MB—even less if the processor is fabricated as an ASIC. Na-

tive execution of Java on these specialized processors is also extremely fast.

Benchmarks have shown that a Java processor can be 500 times faster than

a comparable processor running an interpreting virtual machine [97]. A side-

effect of this efficiency is that Java processors can achieve deterministic real-time

60

performance while consuming very little power. The JStamp board, which in-

tegrates a Java processor from aJile Systems, can run on a 9-volt battery for

over 40 hours [65].

Easier certification A subtler benefit of Java processors is important when consid-

ering safety- and mission-critical real-time systems. These systems must obtain

certification, such as the DO-178B standard for avionics software [38], to ensure

traceability from system requirements to source code. In a traditional real-time

Java application, multiple layers must be traced: the operating system, the vir-

tual machine, and the application code. When the application runs on a Java

processor, however, the OS and VM layers disappear, removing tens of thou-

sands of lines of code and making the certification process faster and cheaper.

Only the Java processor and the application itself need to be certified.

The Java language Moving a real-time system from C to a Java processor brings

advantages due to the nature of the Java language: strong type safety, easy

portability across processors, and other benefits as outlined in Section 3.2. The

processors allow the entire system to be written in 100% Java, disposing of the

need for special-purpose real-time languages like wcetC [98].

These qualities make Java processors an attractive platform for hard real-time sys-

tems. Although moving to such a novel and unique architecture may seem drastic,

developers have a tradition of adopting new platforms when special needs arise, as

evidenced by the popularity of ARM and PowerPC architectures for embedded de-

vices. Supporting this assumption is a questionnaire distributed to WCET tool users

in 2003; it revealed that 75% of respondents would adopt a processor with more pre-

dictability even if it meant a loss in average performance [99]. Certainly, the most

important feature of a processor for hard real-time systems is not how fast it can go

but how much it can be slowed down by a series of unfortunate events.

61

Recognizing the potential of Java-specific processors, research groups and commercial

vendors have created a number of different designs over the last decade. The first was

Sun’s picoJava [100], an experimental project in making a chip that would accelerate

Java bytecode in much the same way that graphics co-processors accelerate drawing

operations. Although the picoJava was never actually manufactured, it was influential

as a reference platform for subsequent generations of Java processors.

Since the picoJava, a number of Java chips have come and gone. Some are not pure

Java-native processors but rather hybrids—conventional processors combined with

some form of Java acceleration. For example, they may have a bytecode interpreter

built-in to the hardware, or they may have a customizable instruction set that allows

them to understand Java bytecode. Jazelle [101, 102], Sun SPOT [103], TINI [104],

Lightfoot [105], and the “asynchronous Java accelerator” [106] are instances of this hy-

brid approach. Such processors add additional layers of complexity that make WCET

analysis difficult and therefore are not very suitable for hard real-time applications.

Other Java processors appear to be dead projects (or at least in suspended anima-

tion). Moon [107], Komodo [108, 109, 110], and Femtojava [111, 112] are apparently

no longer actively developed, although each has had an impact on the evolution of

Java processors. Conversely, some Java processors that have migrated from the lab to

the commercial sector are clearly a success and remain quite popular. In particular,

the aJile chip [73, 113] is readily available in development kits such as the JStamp

from Systronix (see Figure 3.9). aJile’s microprogramming includes most of the func-

tionality specified in the RTSJ, including a priority-preemptive scheduler, a ceiling

semaphore protocol, periodic threads, and a non-garbage-collected heap. More recent

designs for Java processors, such as the Cjip [114, 115], LavaCORE [116], SHAP [117],

jHISC [118], and BlueJEP [119], continue to shatter myths about what Java can and

62

Figure 3.9: The JStamp, a Java-based analog to the popular BASIC Stamp, executes
Java bytecode natively using the aJile processor. It includes built-in components often
needed for real-time and embedded applications, such as serial interfaces, timers and
counters, pulse-width modulation output, and so on. (Photograph by Systronix Inc.)

cannot do for real-time systems.5

Of all these processors, one in particular stands out, especially when considering the

requirements of interactive analysis. The Java Optimized Processor, or JOP [120, 97],

was designed from the ground up with predicability and ease of analysis as the primary

objective. While other processors focus on making the average case fast, JOP follows a

different mantra: “Minimize the worst case.” It strives to enable simple and accurate

WCET analysis, even at the cost of overall performance. Remarkably, this design

constraint was met without resorting to unreasonable sacrifices in speed. Benchmarks

show that JOP performs about as well as other Java processors when normalized for

logic cell count and memory block usage.

One of the principal contributions of JOP is that it demonstrates how the unique na-

ture of Java enables the processor’s functional units to be free of time dependencies.

5For a treatise on the history of Java processors, including architectural details and performance
comparisons, refer to Schoeberl’s doctoral dissertation [120].

63

For example, JOP takes advantage of the fact that Java’s getfield and putfield instruc-

tions never overlap with an invoke or return instruction, ruling out the possibility of

bus contention between the data cache and JOP’s method cache. Consequently, the

large worst-case time that would otherwise exist is eliminated, and WCET analysis is

much less complicated. Additional WCET-friendly features of the JOP architecture

include:

• Translation from Java bytecode to JOP microcode takes exactly one cycle in

all cases and is therefore predictable.

• The execution pipeline stage is kept simple; only the two topmost stack ele-

ments are available. This prevents pipeline bubbles and ensures a constant and

predictable execution time for all microcode instructions.

• The data cache for local variables and the operand stack is predictable in that

access to local variables is a guaranteed hit and no pipeline stalls can occur.

• Even simple processors may include an instruction prefetch buffer, but JOP’s

method cache and translation unit eliminate the need for such a feature, along

with the variable latency it would introduce. JOP is immune to “cache chaos” [121].

The end result is a processor that is substantially easier to analyze. The cycle timings

for every bytecode implemented in the hardware are listed in its documentation, so

the WCET analysis of a basic block—that is, code without branches or method

invocations—can be computed simply by summing the cycles.

Another advantage of JOP is that it is entirely open-source. All of the design re-

sources, including the raw VHDL, build files, and auxiliary source code, can be

downloaded for free from the JOP web site.6 This openness helps encourage fur-

6http://jopdesign.com/

64

http://jopdesign.com/

ther development, both of the JOP itself and of projects based on the JOP. For

example, a loose-knit research community has been forming around the processor; it

has contributed add-on projects such as a Bluetooth API [122], a speech recognition

library, a VGA output module, a multiprocessor architecture, and more. The com-

munity is also working to alleviate certain weaknesses in the JOP, most notably its

lack of a proper ASIC fabrication of the design, which means that any deployment

of the processor must rely on expensive and relatively slow FPGAs. Currently, there

are ongoing efforts to port JOP to cheaper FPGA boards, and preliminary work has

begun on synthesizing JOP as an ASIC. Combined with the inevitable progress of

computer technology, which has proven capable of squeezing the large workstations

of today into tomorrow’s mobile phones, the current speed and cost limitations of

the JOP should soon dissipate. Even now, the processor is fast enough for most

embedded real-time applications, as it has already been used successfully in various

industrial projects: a railway communication device, a remote data logging system,

and other real-world settings.

Given all of these advantages, JOP makes an ideal platform for demonstrating the

capabilities of interactive analysis. All subsequent discussion will therefore assume

that JOP is the processor in use. Theoretically, almost any other Java processor

could also support interactive analysis; however, the required data for timing analysis

is virtually non-existent. The documentation for the aJile chip, for instance, goes

into great detail about the processor schematics, pinouts, signaling, and the runtime

Java classes, but it lacks information on the worst-case cycle time of each bytecode

instruction. Only JOP explicitly defines these crucial details.

65

Chapter 4

Annotating Control Flow for

Interactive Analysis

66

Chapter Summary

Context Analyzing a program for worst-case execution time begins with
knowledge of control flow—the order of execution of the program’s
instructions. This knowledge is typically captured as a graph data
structure that corresponds to the connections between basic blocks,
loops, and branches of the underlying code. Representing the code
in this manner adds a higher level of abstraction that facilitates
more complex analysis, not only for WCET, but also for compiler
optimization, reverse engineering, static bug detection, and so on.

Prior Work Countless control flow graph construction algorithms and tools have
been created, usually as part of larger projects such as compiler in-
frastructures. In the context of WCET analysis for Java micropro-
cessors, the most notable examples include Soot, aiCall, and Avrora.
They are able to generate a graph of control flow but cannot create
a tree-based representation that some WCET algorithms require.
Most do not even guarantee that the control flow data matches the
original program, since the focus is typically on compiler optimiza-
tion, where correctness is fundamental but precise timing is not.

Problems Because control flow graphs are a representation of the underlying
machine code, any visualization of the data is difficult to comprehend
because it contains only the low-level instructions and often lacks any
obvious relationship to the original source code. Existing algorithms
make no attempt to bridge this gap by mapping their control flow
data structures to the source. In addition, a graph-based structure
is not suitable for tree-based analysis algorithms that would make
fast, interactive WCET analysis possible.

New Claims This chapter presents the first generic, stand-alone tool for con-
trol flow analysis of Java bytecode. Called Cascade, it preserves
all bytecode so that it may be used safely for WCET analysis. It
also demonstrates a novel approach of decompiling the program and
mapping the results to the control flow data structures. Not only
does this technique make the data easier to understand, it is also an
important prerequisite for the back-annotation feature described in
Section 5.3.1. Furthermore, Cascade can optionally generate a tree-
based variant of the control flow data that is much faster to analyze
and visualize.

Results The architecture of the Cascade tool is presented with a special em-
phasis on its support for the tree-based representation. Empirical
evidence shows that this tree structure makes control flow creation
and drawing much faster. Anecdotal evidence also suggests that
trees produce superior visualizations of control flow because they
more closely match the structure of the original source code. Fi-
nally, an example is shown of integrating Cascade into a traditional
development environment.

67

The computer scientist Alan Perlis once said that writing an incorrect program is

easier than understanding a correct one [123]. As real-time systems continue to

grow in size and complexity, this axiom is taking on new significance. The ability of

developers to understand their real-time code is eroding, especially when relying on

older technologies such as C. Despite its status as the most popular language in real-

time computing, it is relatively low-level, error-prone, and sometimes makes incorrect

programs easy to write.

Chapter 3 outlined a solution to this complexity problem. The basic approach is to

construct real-time systems with a cleaner, higher-level language that makes software

easier to create, understand, and analyze. The analysis factor in particular helps meet

the broader goal of interactive analysis, which depends heavily on WCET knowledge

to prevent timing bugs.

As for the remainder of the Perlis epigram—understanding correct programs—the

object-oriented features of high-level languages hide unnecessary details and keep in-

terfaces separate from their implementations. These capabilities aid in understanding

the functional correctness of a program. For temporal correctness, however, modern

high-level languages fall short. The analysis model of Chapter 2 promises to fill this

void through interactive tools that help developers understand the timing properties

of their software—properties that would otherwise be nearly impossible to compre-

hend.

With the assumption of Java code running on Java processors, the foundation for

constructing these tools is already in place. The next step is to move up to a higher

level of abstraction. As shown in Figure 4.1, the layer above Java bytecode is con-

trol flow analysis, which produces a data structure expressing the order of execution

of individual statements. This data structure is then used as a basis for WCET

computation and other elements of interactive analysis.

68

Java bytecode

Control flow analysis

WCET analysis

End-user tool

In
c
re

a
si

n
g
 l
e
v
e
l
o
f

a
b
st

ra
c
ti

o
n

Java processors

Focus of this chapter

Figure 4.1: Tools for interactive analysis must operate across the multiple layers of
abstraction shown in this diagram. At the core lies the simplifying assumption of a
Java processor, followed by Java bytecode that runs on the processor. Control flow
analysis—the focus of this chapter—is then built on top of the Java bytecode.

Control flow analysis necessarily begins with knowledge of the exact code that will

run on the target device. The analysis must then examine this code to build up a

model of the flow. The process is simplified somewhat in that all code relating to

data flow can be ignored; only the control flow is relevant. For example, a series of

instructions to calculate an arithmetic expression may push and pop the stack, read

and write memory, and so on, but as long as the sequence invokes no methods and

takes no branches, it can be reduced to a single entity known as a basic block. By

definition, basic blocks are sequences of instructions without any transfers of control.

If one instruction in a block is executed, all are.

To accomplish the goal of grouping code into these basic blocks and specifying the

flow between them, two general tactics have been employed:

1. Write a custom tool that parses Java bytecode1 and, by analyzing branch tar-

gets, groups the bytecode into its constituent basic blocks, loops, if statements,

1Although this chapter assumes Java bytecode, the general techniques apply to other bytecode-
based languages such as C#.

69

and so on.

2. Modify a Java compiler so that the abstract syntax tree (AST) it produces can

be saved to a file for later analysis. Additional hooks must be added so that

the code generation phase of the compiler can link the bytecode to the AST.

(This step is necessary for WCET analyzers and other higher-level tools.)

Both techniques have advantages and drawbacks that are mutually exclusive. For

instance, a custom tool designed only for inspecting bytecode and extracting control

flow information is easier, in general, than adapting a compiler’s innards for WCET-

oriented control flow analysis. Most compilers were never intended for such a task

and tend toward monolithic designs that are not amenable to customization. On

the other hand, a compiler approach can be more powerful. The data flow analysis

built-in to most compilers may be combined with the control flow information for

more sophisticated analysis. A loop bound detector, for example, could be derived

from the loop unrolling mechanism available in optimizing compilers. As a result,

instances of both techniques can be found in prior work for control flow analysis of

Java bytecode.

4.1 Related Work

Control flow information has long been important for many types of program analy-

sis. The availability of control flow is a key factor in the precision of pointer analysis

algorithms, for instance [124]. These algorithms are able to detect certain cases of

null pointer dereferencing and other invalid pointer operations without actually run-

ning the program. Compilers also rely on control flow analysis as the starting point

for a large number of optimizations, while program transformation tools use it to

70

convert source code from one language to another. More recently, control flow anal-

ysis has been applied to the enforcement of security models in high-level languages,

helping ensure that mobile phones, for example, are protected from malicious code

downloaded from the Internet [125].

For Java, a variety of control flow analysis tools are available, though none is de-

signed with WCET analysis in mind. The vast majority are hidden within some sort

of compiler infrastructure to support AST generation and similar internal chores.

For instance, the program transformation framework Spoon [126] includes a partial

evaluation engine that calculates the control flow of a program for identification and

removal of dead code.

Optimizing compilers for Java also depend heavily on control flow analysis. The

bytecode optimization framework Soot [127] generates control flow graphs for subse-

quent data flow analysis and conversion to static single assignment (SSA) form. Soot

provides several different control flow abstractions via its DirectedGraph interface, as

well as an interactive tool (see Figure 4.2) that integrates control flow with data flow

analysis for debugging purposes [128].

FLEX, another compiler infrastructure for Java, is designed for code generation as well

as bytecode optimization [129]. It can transform Java source code into StrongARM

instructions, MIPS instructions, or portable C. As part of this process, it converts

Java code into an intermediate representation whose control flow graph can be queried

programmatically via a public API.

A less common but equally valuable application of control flow analysis is test cover-

age. The eXVantage system is one such example; it includes a static analysis phase

during which it parses Java class files and constructs a corresponding control flow

graph. The system then examines the graph and, through dominator analysis [130],

71

Figure 4.2: Soot, a framework for bytecode optimization, includes an interactive con-
trol flow graph tool for debugging intraprocedural analyses and for teaching students
about control flow and data flow. (Screenshot by Jennifer Elizabeth Shaw [128].)

assigns an appropriate weight to each vertex and edge. The end result of this effort

is a system that ensures all exceptions in a given program are handled properly.

Various other tools for static analysis in Java also incorporate control flow in some way.

BAT2XML performs control flow analysis in order to produce a high-level XML-based

representation of Java source code [131]. SableCC, a compiler compiler, generates

visitor classes for walking the nodes of an abstract syntax tree [132]. JRefactory [133],

a semi-automatic source code refactoring tool, and Barat [134], a Java-based compiler

front end, also produce ASTs for representing the control flow of an input program.

Thus far, no existing control flow analysis tool has been applied to the problem of

72

WCET analysis in Java. Instead, WCET analyzers generate control flow information

on their own. The Javelin tool [64], for example, derives control flow graphs using

a Java bytecode parser written from scratch in Ada. The WCA tool [135] likewise

builds a model of control flow on its own, although it takes advantage of BCEL [136]

to simplify parsing of bytecode. ASM [137], a bytecode manipulation framework

like BCEL, can also be used for bytecode parsing and includes limited support for

extracting control flow information from a single method.

4.2 Source-Annotated Control Flow Analysis

These prior efforts in control flow analysis suffer from two weaknesses. First, most

tools are intended for compiler research and therefore focus on bytecode optimization

and code transformation. Any control flow structure generated from the initial pass

may not resemble the actual bytecode produced in the final pass due to optimizations

such as loop unrolling. This factor is especially significant for WCET analysis, which

requires a control flow analyzer with a precise mapping from bytecode instructions

to control flow for accurate timing predictions. Modifying existing compilers for this

purpose, which are already inherently complex, is a formidable task and may require

extensive interleaving of custom code.

Second, control flow analyzers tend to be cryptic. They typically display only assem-

bly code or an intermediate representation when visualizing the control flow structure.

The aiCall control flow grapher [138], for example, shows assembly code in its output

window (see Figure 4.3), requiring the user to understand the intricate details of a

program even if it was written in a high-level language. Other control flow tools, such

as the one provided with the simulation and analysis framework Avrora [139], are just

as inscrutable (see Figure 4.4). Even tools designed for the needs of WCET analysis,

73

Figure 4.3: Many control flow graph visualizations, such as the aiCall tool shown
here, require the user to develop in a high-level language but analyze in low-level
assembly code. Understanding the behavior of the code is impossible without a deep
understanding of the processor’s instruction set. (Screenshot by AbsInt Angewandte
Informatik GmbH.)

such as WCA [135], are equally obfuscated in their visualizations (see Figure 4.5).

This exposure of low-level assembly code places an undue burden on the programmer

and conflicts with the goals of interactive analysis.

Avoiding the first weakness is normally handled by writing a control flow analyzer

from the ground up, but the second weakness is much more difficult to circumvent.

Ideally, a control flow analysis tool would be able to reverse engineer executable

instructions back into human-readable source code. The tool could then combine the

control flow visualization with this source code for easier data digestion by the user.

In practice, though, executable machine instructions bear little resemblance to the

original source code due to compiler optimizations, user-defined data types, idiomatic

expressions (such as bit-shifting instead of multiplication), and so on. Despite prior

research in this direction [140, 141], decompilation of C programs is still limited and

74

Figure 4.4: Avrora, a software simulation and analysis framework, includes a tool
for control flow visualization. Because its visualizations lack high-level source code
information, the semantics of the programs under analysis are obscured. (Screenshot
by the UCLA Compilers Group.)

only semi-automatic.

In Java, however, these conditions no longer hold. Java class files contain more infor-

mation than is available in compiled C executables, and the high-level nature of Java

bytecode allows a near-perfect reconstruction of the original source code, assuming

that the bytecode contains standard debugging symbols and has not been obfuscated.

The susceptibility of Java to decompilation presents a unique opportunity for con-

trol flow analysis: Every control flow element (e.g., basic block) can be mapped to

75

M170_S_E0

M170_B1_E0

3

fM170_S_E0_M170_B1_E0=1

M170_B2_E0

8

fM170_B1_E0_M170_B2_E0=1

M170_B3_E0

42

fM170_B2_E0_M170_B3_E0=64

M170_B6_E0

21

fM170_B2_E0_M170_B6_E0=1

M170_I4_E0

75

fM170_B3_E0_M170_I4_E0=64

M170_T_E0

fM170_B6_E0_M170_T_E0=1

M170_B5_E0

24

fM170_I4_E0_M170_B5_E0=64

fM170_B5_E0_M170_B2_E0=64

Figure 4.5: WCA, a prototype tool for WCET analysis on the JOP, can produce a
graph of control flow. The graph shown here is a visualization of the program in
Figure 4.6, but the relationship is nearly invisible because the graph retains none of
the source code from the original program.

a representative expression in the Java language. By exploiting this feature, analy-

sis tools can automatically annotate2 control flow data structures with source code

information, making them much easier to comprehend.

For example, a control flow graph of the computeVelocity method from Figure 4.6

would show only bytecode instructions if generated by conventional tools:

2An annotation in this context refers to a source code expression attached to the corresponding
element of a control flow data structure. The term should not be confused with the metadata facility
in Java—also known as an annotation facility—that allows source code elements to be marked as
having a particular attribute.

76

c l a s s SpeedSensor
{

pr i va te f i n a l s t a t i c i n t VELOCITY SIZE = 64 ;

pr i va te i n t computeVe loc i t y (i n t s t a r t V e l o c i t y ,
i n t a c c e l e r a t i o n ,
i n t de l taT ime)

{
return s t a r t V e l o c i t y + a c c e l e r a t i o n ∗ de l taT ime ;

}

pub l i c void g e tVe l o c i t yDa t a (i n t [] v , i n t [] u , i n t [] a , i n t [] dt)
{

@LoopBound (max=VELOCITY SIZE)
f o r (i n t i = 0 ; i < VELOCITY SIZE ; i++)
{

v [i] = computeVe loc i t y (u [i] , a [i] , dt [i]) ;
}

}
}

Figure 4.6: This example program, which computes a simple velocity function, forms
the basis of Figures 4.8 and 5.3. The purpose of the code is unimportant; it exists only
to illustrate control flow and WCET analysis techniques. (The @LoopBound statement
is a custom annotation for communicating loop bounds to a WCET analyzer.)

i l oad 1

i l oad 2

i l oad 3

imul

iadd

With decompiler support, the tool can match this bytecode sequence to its high-level

source code construct. It can also reproduce the original variable names by reading

debugging symbols from the class file, resulting in the following expression:

s t a r t V e l o c i t y + a c c e l e r a t i o n ∗ de l taT ime

77

Another noteworthy benefit of decompilers is their ability to identify Boolean ex-

pressions hidden within the control flow. Consider, for instance, the following source

code:

i f (i > 10 && ! b)

i += 6 ;

From this snippet, a typical Java compiler might generate the following bytecode:

0 : i l oad 0

1 : bipush 10

3 : i f i c m p l e 13

6 : i l oad 1

7 : i f n e 13

10 : i i n c 0 , 6

13 : . . .

Traditional control flow analyzers would map the above branching instructions di-

rectly to nodes in the control flow, as shown in Figure 4.7. This one-to-one relation-

ship results in a disconnect between the source code structure and the control flow

structure: There is one branch in the source code but two branches in the control

flow. Failing to capture the high-level structure of the original source code can lead

to confusion for the user studying the control flow.

By comparison, a control flow analyzer with decompiler support collapses the branch-

ing bytecodes into a single entity (shown in Figure 4.7 as a gray box) by applying

Ramshaw’s algorithm [142] or a similar technique. In other words, the decompiler

identifies the high-level Boolean expression implemented by the low-level bytecode,

allowing the analyzer to group the vertices of the graph accordingly. This approach

78

iload_1

ifne 13

iinc 0,6

...

iload_0

bipush 10

if_icmple 13

if (i > 10 && !b)

i += 6;

iload_1

ifne 13

iinc 0,6

...

iload_0

bipush 10

if_icmple 13

Figure 4.7: This simple example of the expression if (i > 10 && !b) i += 6 shows the
difference between traditional and annotated control flow information. The unanno-
tated graph on the left appears to contain two if statements, while the annotated
graph on the right not only reveals high-level source code but also more accurately
represents the original expression’s structure.

produces a structure that bears a closer resemblance to the original program flow

while also incorporating source code statements into each entity. (Variations on the

visualization could collapse the edges so that they link the entities instead of the

vertices, making the graph match the source code structure even more closely.)

While the difference may seem small in the simple example of Figure 4.7, it becomes

significant as code complexity grows and control flow readability dwindles. Further-

more, the annotation and grouping remains fully automatic, no matter how large and

complex the program becomes.

Such features clearly enhance the readability of control flow data, yet they would be

difficult to implement properly in lower-level languages such as C. In Figure 4.8, for

79

example, a typical C-based control flow analyzer would show only the processor in-

structions of each basic block, but with decompilation support, the Java-based control

flow analyzer was able to annotate the vertices of the graph with the Java statements

they represent. Note that this particular visualization, which was produced by the

Cascade tool described in Section 4.4, also groups the control flow entities according

to the method in which they belong to further enhance readability. The process is

entirely automatic and does not require manual intervention of any kind.

4.3 Strengths and Limitations of Decompilation

Understanding programs is indeed difficult, as Alan Perlis said, but annotated control

flow analysis is a step toward mitigating this problem. The source code visualization

enabled by decompilation helps guide developers through the process of program

analysis. The decompilation aspect also offers an intriguing side-effect: It plays a

major role in enabling back-annotation, a key component of interactive analysis that

will be explored in detail in Chapter 5.

Decompilers for Java also serve as a practical foundation for writing WCET analy-

sis tools because they perform essentially the same task—that is, parsing bytecode

and building up control flow information—that traditional WCET tools have always

done. Integrating a decompiler into the analysis process is, however, a novel and

unconventional tactic. It has not previously been attempted, most likely because the

very idea of Java as a hard real-time programming language is so new.

The general idea of decompilation is, on the other hand, not new at all. Decompilers

emerged in the 1960s, just a few years after the invention of the first compilers [143].

They were intended to recreate lost source code, translate binary programs from one

80

SpeedSensor.getVelocityData(int[],int[],int[],int[])

i = 0;

for (i < 64)

v[i] = computeVelocity(u[i], a[i], dt[i]);

i++;

goto

return;

SpeedSensor.computeVelocity(int,int,int)

return startVelocity + acceleration * deltaTime;

Block S

Entry

Block 1

0: iconst_0

1: istore 5

Block T

Exit

Block 2

3: iload 5

5: bipush 64

7: if_icmpge -> 37

Block 6

37: return

 (false)

Block 7

10: aload_1

11: iload 5

13: aload_0

14: aload_2

15: iload 5

17: iaload

18: aload_3

19: iload 5

21: iaload

22: aload 4

24: iload 5

26: iaload

 (true)

Block 3

30: iastore

Block 4

31: iinc 5 1

Block 5

34: goto -> 3

Block 8

27: invokespecial 2

Block 10

0: iload_1

1: iload_2

2: iload_3

3: imul

4: iadd

Block 9

5: ireturn

Figure 4.8: An annotated control flow graph, such as the one shown here of the code in
Figure 4.6, contains more human-readable information than the examples in Figures
4.3, 4.4, and 4.5. The user does not even require the original source code listing to
understand the semantics of the control flow.

81

machine to another, debug compiler code, and perform other such tasks. These first-

generation decompilers were only about 90% accurate, leaving the programmer with

the chore of decompiling the remaining 10% by hand. Even the decompilers of today

have not improved upon this ratio, due in large part to the optimization tactics of

modern compilers. As a result, reproducing the original C source code of an arbitrary

binary program is virtually impossible. Decompilers tend to output scattered chunks

of raw assembly code in places where they cannot determine the equivalent construct

in C.

In Java, however, compilers typically perform no optimizations whatsoever (with a

few notable exceptions, such as constant folding). The compiler authors usually rely

instead on the performance-boosting power of Java virtual machines, whose just-

in-time compilers translate bytecode into fast-running native code at runtime. The

relatively simple compilation of Java source code gives decompilation a much greater

chance of success. Indeed, only one year passed between Java’s introduction in 1995

and the release of Mocha [144], the first Java decompiler, which caused a minor panic

to erupt in the Java community. Suddenly, binary code was no longer hidden from

prying eyes and could instead be reverse engineered into a nearly perfect recreation

of the original source code, revealing programming tricks and other trade secrets that

would have been well-hidden within a C binary. The uproar prompted the author to

momentarily withdraw Mocha from public distribution.

Since then, the angst surrounding Java decompilation has largely subsided. Most

developers seem to have realized that Java decompilers have legitimate purposes, just

like the original decompilers of the 1960s, and are not inherently wrong. Eric Smith,

the curator of Mocha, notes that “attempting to ban tools like Mocha to prevent

reverse engineering of software is like trying to ban socket sets to prevent reverse

engineering of automobiles.” [144]

82

s t a t i c void F i l l P owe rMa t r i x (D i g i t mat r i x [] [] , D i g i t x []) {
i n t n = mat r i x [0] . l e n g t h ;

f o r (i n t i = 0 ; i < n ; i++) {
mat r i x [i] [0] = new D i g i t (1) ;

f o r (i n t j = 1 ; j < n ; j++) {
mat r i x [i] [j] = mat r i x [i] [j −1] . mult (x [i]) ;

}
}

}

Figure 4.9: This listing is a simple matrix multiplication example to illustrate source
code before obfuscation. The result of obfuscating this code can be seen in Figure 4.10.

Regardless of how developers may feel about the ethics of reverse engineering, protests

against Java decompilers have abated mostly because of the simple realities of the

Java industry. The vast majority of Java code is now deployed not as end-user desk-

top applications but as web services, where bytecode is not available for inspection.

Even if it were, the best decompilers on Earth are unable to recover source code

comments and other documentation that may be necessary to make use of the code.

Furthermore, a variety of obfuscation techniques [145, 146] are now available in tools

such as JHide [147]. These techniques, which include identifier scrambling, control

reordering, and method merging, change the bytecode in ways that thwart decompila-

tion without breaking the semantic correctness of the program. Figures 4.9 and 4.10

provide a before-and-after example of the effects of obfuscation.

These obfuscation techniques would seem to foil the idea of annotated control flow

analysis if not for one simple fact: The developer analyzing the code is very likely the

same person who wrote the code. There are few scenarios in which analysis would

take place without the developer having access to the original source code. Even if the

analysis and the coding are performed by two different individuals, they would almost

certainly be part of the same team of developers. Tools for annotated control flow

83

s t a t i c void F i l l P owe rMa t r i x (D i g i t [] [] r0 , D i g i t [] r1) {
long l 0 ;
i n t i 2 , i 3 ;

f o r (i 2 = r0 [0] . l eng th , i 3 = 0 ; i 3 < i 2 ; i 3++) {
r0 [i 3] [0] = new D i g i t (1) ;

f o r (l 0 = (long) 1 & 4294967295L ˆ l 0 & −4294967296L ;
(i n t) (l 0 & 4294967295L) < i 2 ;
l 0 = (long) (1 + (i n t) (l 0 & 4294967295L)) ˆ l 0 & −4294967296L) {

r0 [i 3] [(i n t) (l 0 & 4294967295L)] =
r0 [i 3] [(i n t) (l 0 & 4294967295L) − 1] . mult (r1 [i 3]) ;

}
}

}

Figure 4.10: This listing shows the effect of an obfuscation technique that packs local
variables into bitfields [145]. The code performs the same computation as Figure 4.9
but is much more difficult to read and understand.

analysis can therefore assume that obfuscation is disabled, since there is no reason to

obfuscate code from oneself.

The next step, then, is to select a decompiler best suited for the needs of annotated

control flow analysis. On the surface, the choice may seem arbitrary because decom-

pilers for Java operate on the same basic principles [148]. Starting with Java bytecode

as input, they identify expressions and type information to build up a control flow

graph. A sequencer then compresses the graph by converting particular branching

patterns into Boolean expressions using Ramshaw’s algorithm [142]. The result is a

legal, though possibly convoluted, abstract syntax tree. Next, the decompiler trans-

forms this AST to resemble a more natural program by converting anomalous break

and continue statements into equivalent loops and if statements. Finally, it translates

the normalized AST into Java source code. Figure 4.11 illustrates this process.

While all decompilers tend to follow the same general strategy, they are not all alike.

Some, like Mocha, are relatively basic and are only able to invert known compilation

84

Expression builder

Node sequencer

Code simplifier

Goto eliminator

Java source code

Java bytecode

Source formatter

Control flow graph

Augmented
control flow graph

Abstract syntax tree

Restructured
abstract syntax tree

Figure 4.11: Decompilers for Java tend to follow the same general process: They
build up a control flow graph, simplify and normalize the graph, generate an abstract
syntax tree from the graph, and then translate the AST into nicely formatted Java
source code.

strategies, limiting their usefulness to a specific compiler. Others, like Dava [149, 150],

are more adept at decompiling arbitrary code patterns and can cope with bytecode

optimizers, non-Java compilers (e.g., Fortran-to-bytecode compilers), and even certain

types of obfuscations. For example, weaker decompilers presented with the following

bytecode (shown in simplified form):

compute cond

i f e q l a b e l 1

stmt1

85

return

l a b e l 1 : stmt2

return

would transform it into the following source code (shown in pseudocode):

void f () {

i f (cond)

stmt1 ;

return ;

e l s e

stmt2 ;

return ;

}

instead of this more accurate version:

void f () {

i f (cond)

stmt1 ;

e l s e

stmt2 ;

}

In addition to avoiding such weaknesses, a Java decompiler must also consist of a

callable library in order to be suitable as the foundation of an annotated control flow

analysis tool. Many of the currently available decompilers3 exist only as a stand-alone

executable or as a graphical front-end to an executable. Even those that are avail-

3For a comprehensive list of Java decompilers, refer to the work by Hou et al. [146] in testing
decompiler resistance to obfuscation.

86

able in library form may be commercial products that cannot be modified, a factor

that becomes an obstacle especially at higher levels of the tool stack. For example,

a WCET analyzer requires that the control flow contains the exact bytecode of the

original Java classes—not one instruction can be lost or altered—and most decom-

pilers must be modified to support such bytecode preservation. The ideal decompiler

for annotated control flow analysis is therefore an open-source decompiler library, of

which there are only three:

• Dava [149, 150]

• Java Optimize and Decompile Environment (JODE) [151]

• JReversePro [152]

Currently, Dava is still an experimental prototype, while JODE and JReversePro are

more mature projects that continue to be maintained. The latter two would both fit

the needs of annotated control flow analysis, but a closer investigation indicates that

the control flow information exposed by JODE is arguably more versatile and com-

plete, providing the best mix of sophisticated decompilation techniques and extensible

programmatic interfaces.

4.4 Cascade: A Control Flow Analysis Tool

With a strong decompiler as the foundation, a prototype tool can be constructed to

demonstrate the practicality of the ideas presented in Section 4.2. The Volta project,

introduced in Section 2.4, includes such a prototype as part of its tool suite. Called

Cascade, it is the first tool to support the concept of annotated control flow analysis.

87

+ getNext() : Node
+ getInstructions() : List<InstructionHandle>
+ getSourceCodeLineNumber() : int

!

Node

DoWhileLoopWhileLoop

ReturnStatement

Goto

Statement

+ getExpression() : Expression

!

Loop

+ getBody() : Node
+ getCondition() : Expression

!

ForLoop

+ getInitStatement() : Statement
+ getIncrStatement() : Statement

!

IfThenElse

+ getCondition() : Expression
+ getThen() : Node
+ getElse() : Node

!

MethodInvocation

+ getMethod() : Method
+ getInvokeInstruction() : InstructionHandle
+ getInvokingField() : Field

!

Else

Figure 4.12: Cascade, a control flow analyzer with annotation support, translates
Java programs into control flow data structures represented by the classes shown in
this UML diagram. Each class provides operations for obtaining information about
the control flow element, such as the bytecode sequence it represents.

Cascade is implemented in Java and is built directly on top of JODE. It translates

JODE’s decompiler-specific control flow data structures into a general-purpose class

hierarchy, as shown in Figure 4.12. Other tools, such as WCET analyzers, can query

these classes directly from Cascade, shielding them from the complexities of the

decompiler library. Cascade also provides important reflection services for loading

classes, obtaining method handles, computing the static code size of a method, and

so on.

Another key benefit of Cascade is its modularity. Most control flow analysis tools

are monolithic; they are woven tightly into the programming fabric of some other

tool, such as a WCET analyzer or a compiler. Cascade is different in that it can

88

act as a general-purpose control flow analyzer. It is therefore useful not only for the

interactive analysis tools of the Volta stack but for any application requiring access

to the control flow structure of a Java program. For example, Cascade can act as an

enhanced disassembler utility, much like dis [153], jasmin [154], or javap [155], but

with a graphical depiction of the disassembly rather than the canonical text dump.

To achieve this modularity, Cascade is designed purely as a control flow analyzer.

The specifics of WCET analysis are kept out of the tool entirely. This self-contained

design allows other researchers to build on top of the implementation. For example,

one could write a new WCET analyzer, or some other tool entirely, without any

conflicts between existing tools in the Volta project that also rely on control flow

analysis.

For the benefit of such tools, Cascade exposes an API for operations such as:

• Iterating through control flow structures

• Identifying loops

• Finding method invocations

• Obtaining the bytecode, as well as the human-friendly decompiled source code,

associated with any given node

• Translating bytecode into BCEL format [136], a de facto standard for disassem-

bly of class files

• Exporting control flow data to Scalable Vector Graphics (SVG), Graphviz (DOT),

Graph Modeling Language (GML), Graph Markup Language (GraphML), and

plain text file formats

89

The latter two features are particularly valuable because they allow Cascade’s output

to be fed into other tools for further processing and visualization. For example,

BCEL compatibility enables interoperability with existing Java tools that are also

centered around the BCEL format. Likewise, the DOT export format allows control

flow graphs to be rendered using the layout algorithms of Graphviz [156], as shown

in Figure 4.8.

Note that this figure is not a mock-up; it is actual output generated by Cascade of

the program in Figure 4.6. It demonstrates the improvements in readability that

annotated control flow offers compared to the current standard of control flow visual-

ization depicted in Figures 4.3, 4.4, and 4.5. The figure also illustrates how Cascade

automatically annotates each vertex in the graph with the corresponding source code

provided by the decompiler. Without this extra information, the graph would be

much more difficult to comprehend, and the relationship between the control flow

and the original program would be far from obvious. Cascade is the first control flow

analyzer to provide such a feature.

4.4.1 Control Flow Graphs vs. Control Flow Trees

The idea of annotated control flow analysis seems to imply that the only interest-

ing problem is how to combine source annotations with control flow analysis. The

development of Cascade revealed many additional challenges, however. Simply con-

structing the visualization of a control flow graph in a scalable manner is non-trivial.

Not only do performance problems emerge when laying out a large graph structure

on a two-dimensional surface, there is also the issue of human comprehension of such

a complex set of data. The main problem is that graphs are a rather unintuitive

means of visualizing program flow. Indeed, visualization of control flow data as a

90

graph is largely an artifact of the algorithms used to analyze that data, rather than

a deliberate design choice with the user in mind.

The central problem of using graphs to visualize control flow is that source code is

not structured as a network of vertices but rather as a tree. A well-formed Java

program, for example, is expressed as an abstract syntax tree, not an abstract syntax

graph. A graph simply does not correspond to the tree-like structure of high-level

source code. The circuitous graph of Figure 4.8, for instance, does not match the

hierarchical structure of Figure 4.6.

This problem is exacerbated by the fact that conventional graph layout algorithms [157]

have no knowledge of the underlying code, often resulting in eccentric graphs without

any patterns that are recognizable in the original source code structure. The flow

will twist and turn in unpredictable directions that depend on the algorithm used to

lay out the graph. In Figure 4.8, for instance, which was laid out with Graphviz’s

hierarchical algorithm, the control flow moves right, then left, then down, and finally

back up again, making the flow of execution difficult to follow. Even when annotated

with source code, graphs representing computer programs are less than intuitive.

Yet another drawback is that graphs are susceptible to the butterfly effect.4 One

small change to the control flow, such as adding a single line of code, can disrupt the

layout and may drastically alter the appearance of the graph. For example, adding

one statement after the for loop of Figure 4.6 causes Block 7 in Figure 4.8 to jump

from the right-hand side of the graph to the left. Such arbitrary changes disorient

the user and slow down the analysis process because of the extra time needed for the

4The “butterfly effect” is the notion that a stimulus as small as the flapping of a butterfly’s wings
might propagate changes in the atmosphere that may ultimately alter the path of a tornado. This
whimsical scenario has formal roots in chaos theory, which states that small variations in the initial
condition of a system may produce large variations in its long-term behavior. The phrase was coined
by Edward Lorenz, who discovered that entering 0.506 instead of 0.506127 as the input to a weather
simulator produced drastically different results [158].

91

human eye to adjust to the new layout.

Graphs are also problematic when trying to determine certain structural properties of

the control flow. In particular, higher-level tools invariably need to query the control

flow analyzer about its underlying structure, but a graph can make answering these

queries very expensive. Solving a WCET problem, for instance, may require knowing

whether an incoming edge of a control flow vertex lies within the body of a for or while

loop. However, the query “Is this vertex part of a cycle?” necessitates a depth-first

search with a time complexity of O(vertices + edges). Running this search on each

loop of the control flow adds considerable delay to the WCET computation, especially

for larger programs.

To solve these problems inherent in a graph structure, Cascade offers flexibility in

how it represents control flow data. It exposes through its API both a traditional

control flow graph as well as a control flow tree. Representing control flow as a tree

instead of as a graph offers notable benefits:

• A control flow tree is structurally identical to the original source code’s syntax

tree. Therefore, even a trivial tree layout algorithm—one that merely adds

indentation on each descent—automatically follows conventional source code

formatting rules. There is no need for a complicated and time-consuming graph

layout algorithm. Instead, if and else blocks, as well as for and while loop bodies,

are simply indented, as shown in Figure 4.13. This type of visualization has

a clear and natural correspondence to the original source code that makes it

easier to read. Compared to Figure 4.8, for example, it does not require the

eye to follow the flow of control in arbitrary directions. The flow advances only

down and to the right, just like source code.

• Visualizations of control flow trees are immune to the butterfly effect. Adding

92

!"#$%&'()%*'+!,,*+,-.)/01,23,$)&%2456267%-289:%-289:%-289:%-289;

%'<'=>

!"#$%&'()*!

+"#$()&,-#.

?)/'7%'@'AB;

/"#$0&12#.

."#3$45(6#78

9"#$:*$%;4<-#=>#/9

(8%9'<'&)C!"2,3,$)&%247"8%9:'68%9:'*28%9;>

+!"#10&12*+

++"#$0&12#.

+/"#10&12*!

+8"#10&12*?

+."#$0&12#.

+9"#$10&12

+@"#10&12*/

+A"#$0&12#.

?+"#$10&12

??"#10&12#8

?8"#$0&12#.

?7"#$10&12

?9"#$'B&C-(4-%$10#?

/!"#$1()&,-

%DD>

/+"#$$'%#.#+

1)2)

/8"#<&)&#=>#/

/,2"/->

/9"#,-)5,'

private int SpeedSensor.computeVelocity(int,int,int)

return startVelocity + acceleration * deltaTime;

0: iload_1

1: iload_2

2: iload_3

3: imul

4: iadd

5: ireturn

Figure 4.13: Control flow trees capture the same information as traditional control
flow graphs, but they match the original source code structure, making comprehension
easier. In this figure, for example, which was produced by Cascade from the code in
Figure 4.6, the for loop is indented just as it would be in formatted source code. (The
goto and return nodes appear in the tree as placeholders for their respective bytecode
instructions, whereas in the source code they are implicit.)

93

a new statement simply shifts all subsequent statements to allow space for the

new one. The overall tree structure does not change and remains stable in

response to small changes in control flow. (Conceivably, a specialized graph

layout could be created to produce a tree-like visualization that is also immune

to the butterfly effect, but such an algorithm would likely be more complex and

considerably slower than an equivalent tree layout algorithm.)

• Deriving information about the structure of a tree is generally faster and easier

than for a graph. The time complexity of graph-based search algorithms tends

to be a function of the number of vertices plus the number of edges in the

graph, while the complexity of tree-based algorithms tends to be a function of

the height of the tree. For example, determining whether a node in the control

flow tree is part of a loop is simpler and more efficient than making the same

determination for a vertex in a control flow graph. The latter requires a depth-

first search, while the former only requires walking up the tree and visiting

each parent until a loop node (or the root of the tree) is found. Similarly,

tree structures are often easier to traverse. Consider, for instance, the for loop

of Figure 4.8. A graph-based algorithm would have difficulty traversing from

Block 2 to the inside of the for loop: Is it Block 6 or Block 7? Both are

attached to Block 2’s outgoing edges and thus they cannot be distinguished

based on local information. A tree-based algorithm, on the other hand, could

instantly proceed to the loop node simply by traversing to the node’s child—a

constant-time operation.

In addition to these advantages, control flow trees retain the same information found

in a control flow graph. The underlying bytecode and an equivalent flow of control

are still captured by the tree structure. It loses nothing; it is merely a different

representation of the flow information. For this reason, the tree is the fundamental

94

abstraction of control flow in Cascade. When given a Java class file as input, Cascade

constructs a control flow tree, rather than a control flow graph, and it exposes this

tree structure through its API.

Some tools, however, may still require a graph representation of control flow. Many

established WCET algorithms expect a control flow graph, for example. For the

benefit of such tools, Cascade exposes a graph-based façade of the tree through its

API. Tools built on top of Cascade can simply choose the desired representation by

invoking the appropriate methods in Cascade’s API. With this flexibility, Cascade

enables a unique new breed of hybrid high-level tools that can use graphs for analysis

but trees for visualization.

4.4.2 Performance of Cascade

Given that raw speed is a fundamental requirement of interactive analysis (see Sec-

tion 2.3), the performance of Cascade deserves examination. The speed at which the

tool constructs data structures and renders visualizations should be fast enough to

analyze a program as it is written. Otherwise, Cascade could become a bottleneck

not only for control flow analysis tasks but also for any tool that relies on its services.

Prior work has suggested that construction of control flow graphs is such a time-

consuming process that the analysis results should be cached [159]. While caching

is by no means a futile endeavor, performance measurements of Cascade show that

it is often unnecessary. Construction of control flow data structures for programs of

very high cyclomatic complexity [160] takes just a few hundred milliseconds even on

today’s low-end workstations. Longer delays are more likely to exist in higher-level

tools, such as WCET analyzers, than in the control flow construction process.

95

0

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 (

se
c
o

n
d

s)

Cyclomatic complexity

Tree creation
Graph creation

Figure 4.14: This graph compares the speed of creating a control flow tree versus a
control flow graph using the Cascade tool.

Figure 4.14 illustrates these performance measurements in more detail. The results

were obtained by measuring the time Cascade requires to create a control flow tree

and a control flow graph. All tests were conducted on an IBM-compatible desktop

workstation equipped with dual 700 MHz Intel Pentium III processors with one giga-

byte of RAM running Java 1.6.0 on top of the Linux 2.6.17 kernel. The cyclomatic

complexity of the fabricated input program was gradually increased to determine how

performance varies as the size and complexity of the input increases.

As shown in the graph, both the tree and the graph control flow data structures

are quite fast, requiring a fraction of a second even with hundreds of lines of code

at very high complexity. (The twentieth benchmark has a cyclomatic complexity of

twenty and contains approximately 300 lines of non-commenting source statements.)

In terms of scalability, however, the control flow tree variant is the clear winner.

The computation time for a graph grows linearly, while the time for a tree is nearly

96

constant. This result is yet another argument in favor of using control flow trees in

interactive analysis.

The speed of visualization is also a pivotal metric. Interactive analysis naturally

requires interactive visualization, and therefore fast rendering of control flow data

structures is a criterion that should not be overlooked. Here again, control flow trees

have the advantage over control flow graphs. The time complexity of drawing a

tree structure is linear, whereas graph drawing algorithms are roughly exponential in

complexity.

Figure 4.15 provides evidence of this relationship. The input data and test environ-

ment are identical to that of Figure 4.14, but rather than measure the time to create

a control flow data structure, the metric in this case is the time taken to convert an

existing structure to SVG format. Rendering to SVG provides a common reference

point for drawing speed because it only exercises the ability of a rendering algorithm

to lay out a data structure onto a two-dimensional surface. Font selection, rasteriza-

tion, and other tasks associated with drawing to a computer screen are factored out

entirely, keeping the benchmarking process simple and direct.

These results show that as the size and complexity of a program increases, control

flow graphs quickly become unsuitable for interactive visualization. Trees, in con-

trast, are a more appropriate choice when control flow data must be redrawn on

every change to the program under analysis. Even at the highest complexity level in

these benchmarks, control flow trees can be rendered in less than two seconds. The

speed is even more impressive considering that a C-based program running as native

code—Graphviz 2.8—performed the graph rendering, while interpreted Java code—

Cascade’s SVGTreeWriter class—performed the tree rendering and still managed to

outpace the graph algorithm in every test case.

97

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 (

se
c
o

n
d

s)

Cyclomatic complexity

Tree drawing
Graph drawing

Figure 4.15: This graph compares the speed of drawing a control flow tree versus a
control flow graph using the Cascade tool.

The superior speed of control flow trees is a catalyst in allowing direct integration

of Cascade into a development environment. As shown in Figure 4.16, the result

of control flow analysis can be displayed alongside the original source code and up-

dated automatically as the code changes. The host environment in the figure is the

jEdit [161] text editor, but the idea can be ported to other programming tools, such

as Eclipse [162] or NetBeans [163]. This kind of parallel, interactive analysis at the

control flow level sets the stage for more advanced high-level tools, as discussed in

Chapter 5.

4.4.3 Limitations of Cascade

Cascade is notable for its unique characteristics, including annotated control flow

analysis and support for control flow trees. It also offers several less novel but nonethe-

less practical features. For example, it retains bytecode instructions throughout the

98

Figure 4.16: This screenshot of jEdit, a text editor for programmers, shows how the
speed of control flow trees enables interactive analysis. On the left-hand side is a
Cascade plugin for jEdit that visualizes a control flow tree of the current buffer and
automatically updates the display as the code evolves. (The source code for this
plugin is available in the Volta distribution.)

analysis process. While most compiler-based control flow tools simply discard them,

Cascade propagates them from the original class file all the way up to its high-level

data structures. It is also able to map these bytecodes to basic blocks or to individual

source code statements for finer granularity. This property is particularly useful for

WCET analysis tools.

99

In other areas, however, Cascade is currently lacking. As a proof-of-concept pro-

totype, it is hampered by certain simplifying assumptions. Cascade does not allow

labeled break or continue statements, for instance. This omission is not very serious

because, although some legitimate programs may contain such statements, they are

unnecessary and usually undesirable. Like the much-maligned goto statement, they

can make programs arbitrarily hard to understand and optimize [164], and they vi-

olate the single-entry/single-exit paradigm of structured programming [165]. They

are also quite rare in practice. For example, the java and javax packages in the Java

Standard Edition 1.4 contain 220,000 non-commenting source statements, but only 52

of these (0.02%) are a labeled break or continue.

A more significant limitation of Cascade is its ignorance of synchronized statements

and exception handling. The synchronized keyword is quite common when Java code is

designed for a multithreaded environment, and the try/catch combination is pervasive

in almost any Java program. Unfortunately, such statements complicate control flow

reconstruction [149], and they are difficult to analyze for worst-case execution time.

Some researchers in the real-time field are even abandoning synchronized statements

altogether in favor of time-triggered techniques [43]. Given Cascade’s primary role as

a foundation for WCET analysis, the loss of support for synchronization and exception

handling is objectionable but not critical.

Cascade also makes no attempt to solve the polymorphism problem. Object-oriented

languages depend heavily on dynamic dispatch of methods to implement polymor-

phism, but Cascade is a purely static control flow analyzer—it performs no data flow

analysis—and has no way to predict which object in the class hierarchy will be in-

voked by a particular polymorphic call. Of course, an exact prediction is impossible

in the general case, but prior work has provided static techniques for determining the

run-time types of variables, often narrowing the invocation target to a small number

100

of candidates [166]. Other approaches to the problem, including program slicing [167]

and devirtualization [168], show promise but are still a subject of ongoing research.

For this reason, the current version of Cascade neglects the issue of polymorphism,

though a future one must address it.

101

Chapter 5

Interactive Worst-Case Execution

Time Analysis

102

Chapter Summary

Context WCET analysis is a fundamental technique for guaranteeing the
proper timeliness of a program. It begins with a control flow anal-
ysis to break down the program into its constituent parts: loops,
branches, and basic blocks. A low-level analysis is then performed
to compute the WCET of each basic block in isolation. Finally, a
longest-path search determines the worst-case path through these
blocks.

Prior Work When targeting Java microprocessors, control flow analysis and low-
level analysis are relatively straightforward. Most work therefore
centers on the longest-path search, for which there are two leading
approaches: tree-based algorithms and the implicit path enumer-
ation technique (IPET). The latter is more popular, having been
implemented in tools such as Cinderella, Chronos, and Bound-T.

Problems The advantage of IPET is that it can account for data dependencies
such as the false path problem simply by adding an appropriate con-
straint equation to the problem formulation. (Achieving the same re-
sult for tree-based techniques requires changing the algorithm itself.)
Finding these constraints, however, is far from trivial and may re-
quire an extensive data flow analysis. In addition, IPET is NP-hard
in complexity and therefore extremely slow. For small programs,
it can calculate the WCET in seconds, but medium programs take
minutes, and very large programs may take days. (By comparison,
tree algorithms have linear running times.) When WCET analysis
is this slow, it must be postponed until a final validation phase, but
fixing timing errors after the code has been written is expensive,
time-consuming, and may necessitate a redesign of the system.

New Claims This chapter claims that adoption of WCET analysis among industry
practitioners is hindered by the predominance of IPET. If a faster
WCET algorithm could be used, reducing analysis time to seconds
instead of minutes, it could be integrated into every step of the
development process and allow early detection and removal of timing
errors. Focusing on the speed of analysis, not just its accuracy,
will lead to increased productivity and perhaps higher quality code
when building hard real-time systems. The end goal, therefore, is to
make WCET analysis fast enough to be interactive, providing the
developer with continuous feedback from the moment the first line
of code is written.

Results These claims of improved productivity and quality as a result of
faster WCET analysis are not proven in this work. Instead, the
advantages are simply assumed to exist, and the focus then becomes
how to achieve near-instant analysis results. New techniques for
increasing the speed of analysis, and then integrating those results
into a development environment, are provided in Chapter 6.

103

Java bytecode

Control flow analysis

WCET analysis

End-user tool

In
c
re

a
si

n
g
 l
e
v
e
l
o
f

a
b
st

ra
c
ti

o
n

Java processors

Focus of this chapter

Figure 5.1: Tools for interactive analysis must operate across the multiple layers of
abstraction shown in this diagram. At the core lies the simplifying assumption of a
Java processor running Java bytecode, followed by control flow analysis to transform
the bytecode into high-level data structures. WCET analysis algorithms are then
built on top of these structures.

The annotated control flow analyzer of Chapter 4, together with the hardware and

software platforms of Chapter 3, provides a foundation for interactive analysis. The

next step is to build upon this foundation by adding worst-case execution time anal-

ysis, as shown in Figure 5.1.

Knowing the WCET is essential for interactive analysis, which mandates continuous

and interactive feedback in the coding cycle to detect timing errors the moment

they occur. The goal is to weave knowledge of WCET into every thread of software

development, from the moment the first line of code is written, to allow time-sensitive

programs to evolve without sacrificing guarantees on their predicability.

Even without this notion of interactivity, WCET analysis is vital to the design of any

hard real-time system. No scheduling algorithm, for instance, can provide valid results

without this analysis. It is the very bedrock of real-time system theory. In practice,

however, WCET analysis is often neglected or merely “guesstimated.” Although

WCET research is improving, and commercial tools have helped, analysis of non-

104

trivial programs remains limited and ad hoc. Even when an analysis is performed, it

may not provide a true guarantee, leading to unsafe software, or the results may be

overly pessimistic, leading to a waste of resources.

Consider, for example, a real-time system that must sample an analog sensor every 50

milliseconds. Static analysis of this system for a particular processor might declare its

worst-case execution time to be 40 milliseconds, indicating that the code can always

meet its 50-millisecond deadline. If the analysis were not as thorough as it should

have been, however, and the true WCET were in fact higher than 50 milliseconds,

then the system could overshoot its deadline at some point and fail to sample the

sensor. This is an example of an unsafe WCET analysis.

Alternatively, consider the same situation if static analysis had instead indicated

that the WCET were 80 milliseconds. The system designer might choose to double

the speed of the processor, pushing the WCET down to around 40 milliseconds and

thereby meeting the deadline. While this tactic would work (assuming that the

analysis was indeed a true upper bound on WCET), increasing the processor speed

would be pointless if the analysis had been overly pessimistic, and the true WCET

on the original processor was actually less than 50 milliseconds. The extra cost of

the faster processor would then go to waste since it would be reducing the worst-case

time unnecessarily.

In a more extreme situation, the analysis could have been so conservative, and its

upper bound on WCET placed so high, that no processor in the world would be fast

enough to reduce the worst-case time to less than 50 milliseconds. For these reasons,

a safe WCET analysis is not enough; it must also be tight. Figure 5.2 illustrates these

trade-offs.

Unfortunately, placing an upper bound on execution time that is both safe and tight

105

Actual

Predicted

Actual

Predicted

Safe and tightTight but not safe

Actual

Predicted

Safe but not tight

deadline deadline deadline

Figure 5.2: This diagram illustrates the effects of safety versus tightness in WCET
analysis. Note that in the safe-but-not-tight analysis, the system designer will some-
how have to reduce the WCET of the task, even though no reduction is necessary.

is exceedingly difficult. The mercurial behavior of modern processors, due to caching

and other factors described in Section 2.2, is only part of the problem. Another

key factor is an insatiable thirst for abstractions: Software development thrives on

abstraction to simplify almost everything, transforming what would otherwise be a

mammoth effort into a manageable task.

In most software systems, even time is an abstraction, causing tremendous complica-

tions for WCET analysis. In the dynamic memory heap, for example, an allocation

request could complete almost immediately, or it could be substantially delayed in the

event of a page fault. The non-real-time software developer usually does not care, as

long as the overall speed is adequate. Not having to worry about the details of mem-

ory management is the payoff for this abstraction, but as a side effect, its variance

between best-case and worst-case times is enormous. Accounting for such abstrac-

tions is so difficult that execution time on many processors and software platforms is

effectively unpredictable.

To attack this problem, Chapter 3 proposed a restriction on the software and hardware

platform of a real-time system. Selecting Java processors for deployment and the Java

language for code creation simplifies the entire WCET analysis process. In particular,

running code on a Java-based processor such as the JOP eliminates many sources of

106

unpredictability, thereby improving the tightness of a WCET estimate.

Yet even with these simplifying assumptions, a static computation of WCET is still

difficult. In fact, it is theoretically impossible due to the Turing halting problem [169].

Knowing whether an algorithm halts is undecidable, and consequently, the WCET

of an arbitrary program is always infinity. This particular conundrum, however, is

well-known in the field of WCET research, and to work around it, two additional

restrictions on a real-time system are commonly put into place:

• All loop statements must have bounded iterations. That is, the programmer, re-

lying on knowledge of the program’s run-time conditions, must tell the analyzer

how many times each loop would execute in the worst case.

• As a corollary to the previous requirement, recursive function calls, which are

a special kind of loop, are prohibited.

These two restrictions alone solve the halting problem, but they are not enough to

make tight WCET analysis tractable. The usual abstractions found in traditional

software development conspire to make the goal extraordinarily complex. As a result,

two more simplifying assumptions are typically conceded:

• Dynamic memory heap allocations, as well as garbage collection to free them,

are disallowed. This restriction solves much of the abstraction problem, given

that the highly variable delays caused by abstraction are most often a result of

heap maintenance.

• Dynamic dispatch of method invocations, found in object-oriented languages

like Java, is prohibited. Although this restriction is not a consequence of the

halting problem, mechanisms for dealing with polymorphism in WCET analysis

are inadequate and remain an ongoing area of research [170, 171, 66].

107

These assumptions peel away the layers of abstraction that make WCET analysis so

difficult. Although they limit software design to an austere style, at the same time

they open doors to new ways of validating real-time systems, including interactive

analysis techniques. Future advances in WCET research may very well loosen some of

these restrictions, but for the moment they are necessary to enable WCET analysis of

an entire program implemented in a modern, general-purpose programming language.

The following sections examine prior work in WCET analysis techniques based on

these assumptions. They also explore new ways of extending the techniques to make

them interactive. The focus is not on tight WCET analysis but rather on integration

of analysis into the software development life cycle. By improving the practicality

and usability of these techniques, industry adoption of WCET analysis will likely

increase, making real-time systems safer and more reliable.

5.1 The Theory of WCET Analysis

Section 2.2 described the basic concept of WCET for a single statement: a non-

branching, straight-line block of code. Naturally, real programs have many such

statements, and the flow of control jumps to and from them. Manual computation

of WCET quickly becomes unfeasible except for the most trivial code, and perhaps

for simple assembly language programs such as the one in Figure 2.4. Some sort of

automated approach for finding WCET is a necessity.

Hunting down this automated approach has been a formal topic of research since

the 1980s, starting with Kligerman and Stoyenko’s description of analyzing Real-Time

Euclid programs [24]. Since then, the challenge of WCET has spawned hundreds of

research papers as well as a yearly workshop focused specifically on the problem. (It

108

is called, quite unsurprisingly, the International Workshop on Worst-Case Execution

Time.) Several worthwhile papers offer summaries of the most significant advances

in these pursuits:

• In a guest editorial, Puschner and Burns look back on the first decade of WCET

analysis research, examining special achievements and recent advances [172].

They note that after ten years of research, there is still confusion between

execution-time analysis and response-time analysis.

• Engblom et al. provide a broad overview of the established WCET analysis

methods as of 2003 [173]. A noteworthy contribution of this work is a feature-

by-feature comparison of the major research efforts.

• In his Master’s thesis, Stoif breaks down the known WCET analysis techniques,

covering everything from object-oriented language issues to cache and pipeline

concerns [174].

• In an updated version of Puschner’s editorial, Wilhelm et al. survey the tech-

niques for WCET analysis from a more recent perspective [175]. A subtle but

significant variation in this paper is its focus on end-user tools rather than on

the analysis methods themselves. (When Puschner wrote his original editorial

in 2000, no such tools existed.)

These papers show that the topic of WCET analysis has attained a certain level of

maturity, reaching a point where all known approaches can be classified into three

phases: control flow analysis, low-level analysis, and longest path computation. This

section provides an overview of these phases with a scope limited to the assumptions

presented on page 107. It focuses specifically on building a theoretical foundation for

interactive analysis techniques. It also pays special attention to the role of Java in

WCET analysis, supplementing the discussions in Chapter 3.

109

It does not, however, examine any measurement-based approach to finding WCET.

Although survey papers document such techniques, this section rejects them for safety

reasons. Measurement is risky because it cannot guarantee that all inputs the system

will encounter are tested, as illustrated by Figure 2.2. Attempting to measure all

possible inputs would fail due to the huge search space involved. For example, a

single stateless function with three 8-bit integers as inputs would require more than

16 million different tests. Even at a rate of 10,000 tests per second, computing the

WCET with this method would take 27 minutes, an untenable amount of time if

interactive analysis is the goal. And if the integers were 32 bits wide, as is usually the

case in modern high-level languages, the calculation would last two quintillion years.

Despite the inadequacy of measurement in finding a safe WCET bound, it does solve

the problem of tight WCET analysis, and for this reason it remains an active area

of investigation. Some researchers believe that a hybrid of static and measurement-

based approaches, combined with formal probability analysis, is the best way (and,

some would say, the only way) to achieve a tight bound on WCET [93, 176, 177].

This chapter, however, does not consider such techniques because they cannot offer

a true guarantee on timeliness.

5.1.1 Control Flow Analysis

Prior to any calculation of a WCET bound, information about the feasible execution

paths in a program must be collected. This step is called control flow analysis but

may also be referred to as high-level analysis, program flow analysis, or simply path

analysis. The purpose of this analysis is to collect flow information, also known as

flow facts. Identifying precise flow information normally requires some form of control

flow reconstruction directly from binary code.

110

For example, a WCET analyzer for Java might parse the bytecode of a class file,

perhaps with a utility such as BCEL [136]. By examining the destination address

of branching instructions in the bytecode, the analyzer can generate a model of the

program’s high-level constructs: loops, if statements, and basic blocks. Thus, the

input to the control flow analysis step is a sequence of binary code, and the output

is a data structure representing the flow of control through that code.

However, a perfect reconstruction of flow is, in the general case, impossible. For

programs containing loops, the flow is essentially unbounded; an algorithm cannot

know how many times a loop will iterate in the worst case. While recent work has

proposed abstract interpretation as a means of finding certain loop bounds automat-

ically [178, 179], the more common approach is to rely on source code annotations.1

These annotations must be inserted manually when writing the loop constructs, so

they require more effort from the developer and are error-prone, but they make WCET

analysis much faster and simpler. Section 6.4.2 will examine the topic of loop anno-

tations in more detail.

For the Volta suite of interactive analysis tools, the component called Cascade, in-

troduced in Chapter 4, takes care of control flow reconstruction. Purely a control

flow analyzer and ignorant of any data flow information, Cascade depends on loop

annotations to form a complete model of the program under analysis. This particular

limitation is permissible according to the assumptions on page 107.

A unique advantage in Cascade, in comparison to most other control flow analysis

tools, is its focus on Java. Normally, identifying execution paths in machine code

is difficult due to optimizing compilers rearranging and transforming code to gain

1An annotation in this context refers to a metadata facility that allows source code elements
to be marked as having a particular attribute. The term should not be confused with the idea of
annotating the elements of a control flow data structure with source code expressions, as discussed
in Chapter 4.

111

higher execution speed and lower memory consumption. Java compilers, however,

do not perform any such optimizations at the bytecode level. Tools like Cascade are

therefore able to map bytecode to high-level control flow constructs more easily. This

advantage allows fast and efficient WCET analysis, as required for interactivity.

5.1.2 Low-level Analysis

Once the control flow has been reconstructed and loop bounds obtained, the process

continues with low-level analysis, also known as execution-time modeling, or simply

exec-time modeling. This step assigns each instruction in the program an execution

time. The microsecond values in Figure 2.4, for instance, must be derived from

a model of the target processor. Low-level analysis provides this deep knowledge

without consideration of the global control flow and data dependencies of the program.

In actual implementations, low-level analysis may be combined with the longest path

computation step (described in Section 5.1.3), but it is frequently treated as a separate

topic pedagogically because of its complexity. Pipelining and caching effects, for

example, mean that the timing of an individual instruction may not be constant but

could vary on each execution. The complications of these effects force many papers

on the subject to focus on just one component of the problem.

In this simplified discussion, low-level analysis is broken down into two components:

instruction timing and instruction caching.

Instruction Timing

Multi-level caches, branch prediction, and out-of-order execution induce a processor

state whose exact value depends on a large execution history. Modeling this history

112

leads to a state explosion for the final WCET calculation. As a result, low-level WCET

analysis usually requires simplifications of the CPU model, producing an excessively

conservative estimate.

A novel solution, as discussed in Section 3.4, is to rely on a Java-specific processor

such as JOP, which strikes a balance between average case performance and ease of

WCET analysis. JOP avoids complex features like pipeline dependencies, prefetch

queues, and automatic stack dribbling, as found in other Java processors [100]. As

a consequence, there are no timing dependencies across bytecode boundaries, and

pipeline analysis [180] can be omitted. The rules to aggregate timing values [181] can

be applied without introducing significant conservatism.

This simplicity in Java processors is an asset for low-level WCET analysis. It can ig-

nore execution history and processor state, deriving the cycle count for each bytecode

instruction in isolation. Furthermore, low-level analysis need not consider how byte-

code will be translated into native instructions, as there is no just-in-time compilation

on Java-specific processors.

On the JOP, for instance, the cycle count for the GETSTATIC bytecode instruction

is 12 + 2rws, where rws is the number of wait states for a memory read. Almost all

bytecode timings can be computed with a simple formula such as this, assuming that

the instruction is already in the instruction cache. The only input variables are the

instruction opcode and the memory wait states.

Instruction Caching

These simple instruction formulas are due in part to the lack of a true data cache on

the JOP, unlike other processors that include both instruction and data caches. Even

in resource-constrained embedded systems, these caches are often mandatory due to

113

the growing gap between processor performance and memory access time. Of course,

they also complicate the entire WCET analysis process. Significant effort has been

expended on modeling the caches for WCET analysis [33, 32, 31], but the problem

remains an active area of research.

As a compromise between memory performance and ease of analysis, the design

of JOP introduces two time-predictable caches: A stack cache [182] to speed up

access to variables and operands on the execution stack, and a method cache [95] as

a special kind of instruction cache. (Access to the heap is not cached.)

The stack cache is a simple two-level on-chip memory. The two top-most elements

of the stack are held in registers, and the subsequent elements are stored in on-chip

block RAM. There is no automatic exchange between on-chip RAM and the main

memory, as in picoJava [100], which would introduce complex timing interactions

between instructions. The exchange is under microcode control and can be restricted

to method invocation or thread switching.

For caching of instructions, the nature of Java is uniquely beneficial for WCET anal-

ysis. Specifically, bytecode instructions that jump outside of a method boundary do

not exist. As long as the entire method is loaded into the cache, every branch instruc-

tion in that method will be a cache hit. This observation greatly simplifies low-level

analysis because the context of the instruction, such as whether it lies within a loop,

can be ignored completely without neglecting the effects of the cache. The instruction

cache only needs to be considered when invoking a method or returning from one.

JOP’s instruction cache takes advantage of this fact. Instead of a traditional block-

based cache, which may contain only portions of a method, JOP’s cache is method-

based. It always stores complete Java methods, never portions of one. It is filled only

on an invoke or a return instruction; all other instructions are a guaranteed cache hit.

114

JOP’s method cache is also unique in that its architecture can vary according to the

desired sophistication of WCET analysis. In sharp contrast to block-level instruction

caches, its most basic form is the single method cache [95], in which the total size of the

cache matches the size of the largest method to be executed. In this configuration,

every method invocation and return is a guaranteed miss, as shown in Figure 5.3.

(Note that this is still a caching solution because it converts all non-invocation and

non-return instructions into cache hits.)

Although the single method cache makes WCET analysis simple and fast, the cache

miss on every invocation and return causes a substantial slowdown, especially given

the large number of method invocations in typical Java software. To increase the

cache hit ratio, JOP can also be configured to store more than one method at a

time. For example, a dual method cache [95] stores two methods at once using a

least-recently used replacement strategy. As before, both areas of the cache must be

large enough to hold the largest method in the program. (The largest method could

end up in either area, depending on the call graph.)

While the dual method cache improves performance, it also complicates WCET anal-

ysis. Whether a method invocation is a hit or miss depends not only on the structure

of the program but on the input data, as well. For example:

f o r (i n t i = 0 ; i < 10 ; i++)

i f (i % 3 == 0) methodA () ;

e l s e methodB () ;

Without elaborate data flow analysis to determine when i % 3 == 0, a WCET ana-

lyzer must assume that the invocations of methodA and methodB are always misses.

Otherwise, it cannot guarantee a safe estimate.

115

getVelocityData

getVelocityData

getVelocityData

computeVelocity

computeVelocity

MISS

MISS

MISS

MISS

Before invocation of
getVelocityData

After invocation of
getVelocityData

First invocation of
computeVelocity

getVelocityData

getVelocityData

computeVelocity

MISS

HIT
First return from
computeVelocity

getVelocityData

computeVelocity

computeVelocity

MISS

HIT

Subsequent invocations
of computeVelocity

getVelocityData

getVelocityData

computeVelocity

MISS
HIT

Subsequent returns from
computeVelocity

Single Method Cache Dual Method Cache

Figure 5.3: A pure control flow analysis can identify guaranteed hits and misses of
JOP’s method cache in certain situations. This diagram shows one such situation: a
leaf method within a loop, as in Figure 4.6. All invocations of computeVelocity are
misses in the single method cache, but only the first invocation is a miss for the dual
method cache.

Fortunately, other code structures are more amenable to analysis. If, for example, the

call to methodB were removed, and methodA makes no further invocations, then two

guarantees can be made: the invocation of methodA and the return from methodA

will always be cache hits (except for the first iteration when methodA is loaded into

116

the cache, as shown in Figure 5.3).

By identifying such structures in the code—that is, a loop that executes only one

kind of method—analyzers can improve their estimate of the WCET. Section 6.4.4

describes how to to achieve these improvements in the context of interactive analysis.

5.1.3 Longest Path Computation

Once the control flow has been constructed and a means of low-level analysis identi-

fied, the core computation begins. The basic idea is to search for the longest possible

control flow path through the program. (It is somewhat like the shortest path problem

from graph theory in reverse.)

This step, which is known as longest path computation, longest path search, or calcula-

tion of execution scenarios, identifies feasible paths derived from control flow analysis

and assigns execution times to instructions derived from low-level analysis. Sufficient

information is then present to compute the final WCET bound.

Existing techniques for performing this computation come in three varieties: a tree

algorithm, a path enumeration algorithm, and an implicit path enumeration algo-

rithm. The first form is based on recursing through a tree representation of the

control flow, while the latter two forms are based on control flow graph searching.

(For additional work comparing these three algorithms, refer to Engblom, Ermedahl,

and Stappert [183, 184].)

117

while (someCondition)

{

 if (otherCondition)

 variable *= 5;

 else

 {

 variable--;

 flag = true;

 }

}

500 ns

500 ns

200 ns

150 ns

400 nsgoto instruction

iterations = 10

150 ns
300 ns

500 + max(600, 300)

= 1100 ns

400 nsgoto instruction
600 ns

1500 ns

Figure 5.4: A tree-based WCET algorithm recurses to the leaves of a control flow tree
and returns the sum for each node. The execution time for a basic block is simply
summed, but when a branch is encountered, the worst-case time among the possible
paths is returned, resulting in a WCET of 1500 for the loop body shown here. The
body is then multiplied by the maximum number of iterations for a final WCET of
500 + 10 (1500 + 500) = 20,500 nanoseconds.

The Tree Algorithm

The tree-based approach, also known as the structural approach, was among the

very first implementations of WCET analysis [185, 186]. It operates by recursively

descending the nodes of a program’s control flow tree, returning the execution time

for each node. The value returned for the root node is the total WCET. Figure 5.4

shows an example of this concept for a simple loop.

As the algorithm encounters each control flow node, it must decide how to compute

the WCET based on the node’s type. For straight-line code, the time to execute

each instruction is simply summed. For branches (if and switch statements), the path

whose execution time is highest—the “worst” path—is taken as the total time. For

loops, the maximum number of iterations is multiplied by the WCET of the loop’s

118

getWCET(node)

i f node i s nu l l return 0

i f node i s IF THEN ELSE
c y c l e s = getExprWCET(node . c o n d i t i o n a l e x p r e s s i o n) +

max(getWCET(node . then b ranch) , getWCET(node . e l s e b r a n c h))

e l s e i f node i s LOOP
e x p r e s s i o n c y c l e s = getExpressionWCET (node . c o n d i t i o n a l e x p r e s s i o n)
c y c l e s = e x p r e s s i o n c y c l e s +

(getWCET(node . l oop body) + e x p r e s s i o n c y c l e s)
∗ node . loop bound

e l s e i f node i s STATEMENT
c y c l e s = getExpressionWCET (node . s t a t emen t e x p r e s s i o n)

return c y c l e s + getWCET(node . nex t)

getExpressionWCET (e x p r e s s i o n)
return sum o f CPU c y c l e s o f a l l i n s t r u c t i o n s i n the b a s i c b l o ck

Figure 5.5: This program listing is pseudocode for a generic tree algorithm. The
algorithm assumes that the control flow is represented as a tree structure, such that
branches (if statements) and loops are in child nodes, and subsequent statements are
in sibling nodes. A null sibling indicates that there are no further statements on the
given node’s lexical level.

body. Figure 5.5 provides pseudocode for this generic tree algorithm.

In addition to being relatively easy to write and to understand, tree-based algorithms

have benefits that are not so commonly recognized. Raw speed is one example. The

expected running time of a recursive descent to determine WCET is θ(n), where n

is the number of nodes in the control flow tree. (In contrast, graph-based algorithms

are theoretically NP-hard problems.)

Despite these advantages, the tree-based algorithm has fallen out of favor among

some WCET researchers. It suffers from certain drawbacks, such as a susceptibility

to the false path (also known as infeasible path) problem, in which data dependencies

between two if statements can fool the algorithm into computing an overly pessimistic

119

WCET [187].

To illustrate, consider the program listing in Figure 5.6. A quick scan reveals four

possible paths through the code:

• A ! C (WCET ≈ 1010)

• A ! D (WCET ≈ 20)

• B ! C (WCET ≈ 2000)

• B ! D (WCET ≈ 1010)

On closer inspection, however, one of these paths is actually a false path. The path

from B to C is impossible because x cannot be both less than zero and greater than 42.

A purely structural analysis algorithm would ignore this fact and conclude that the

WCET for the program is 2000 (not counting the time for the if conditionals), nearly

double the true WCET of 1010. The algorithm therefore produces a safe value but

not a tight one.

In general, tree-based algorithms have difficulty handling any type of dependency

across sibling nodes due to the nature of tree traversal. With sufficient effort, however,

solving these tricky situations in tree-based analysis is still possible. Colin [188]

describes how a tree-based algorithm can work around the false path problem, for

instance.

The Path Enumeration Algorithm

Another approach for computing the longest path is to enumerate all possible paths

through a control flow graph and simply select the longest of the set. The idea is to

120

i f (x >= 0)
{

// A: WCET = 10
}
e l s e
{

// B: WCET = 1000
}

i f (x > 42)
{

// C : WCET = 1000
}
e l s e
{

// D: WCET = 10
}

Figure 5.6: This simple program demonstrates the false path problem in WCET
analysis. The worst-case execution times for the four blocks of code—A, B, C, and D—
are shown in the comments. The true WCET is 1010 (not counting the conditionals),
but the tree analysis algorithm described in Figure 5.5 would compute 2000.

take advantage of standard graph algorithms and data structures for the computation.

For example, Altenbernd adapted a recursive branch-and-bound graph algorithm to

compute the maximum-delay-to-sink for all vertices [187].

These path enumeration algorithms (also called path-based algorithms) share some

of the tree-based approach’s weaknesses, such as a susceptibility to the false path

problem. As before, this weakness can be addressed by adding more complexity to the

algorithm. Stappert describes one such technique whereby paths deemed infeasible

are pruned from the set [189].

Unlike tree algorithms, however, path enumeration algorithms are generally unable

to contend with loops. Loops appear frequently in control flow graphs, but standard

graph algorithms typically cannot handle bounded loops. (In Stappert’s work, loops

were simply prohibited, exploiting the observation that synthesized real-time code

usually has a simple structure absent of loops.) When loops are present, path enu-

121

meration becomes very computationally inefficient: The number of paths to explore

tends to grow exponentially with the number of control flow branches [190].

These drawbacks, combined with the lack of any major advantages over tree-based

approaches, have stifled the growth of path enumeration as a viable algorithm for

WCET analysis.

The Implicit Path Enumeration Algorithm

In an effort to solve thorny analysis problems such as false paths, an alternative algo-

rithm known as implicit path enumeration has emerged [190, 191]. The technique is

based on the observation that the only objective for most applications of WCET anal-

ysis is to determine worst-case time. Identifying the actual worst-case path through

the code is usually unimportant.

With this observation, WCET computation reduces to an instance of a well-known

problem from graph theory: Finding the maximum feasible flow through a single-

source, single-sink directed acyclic graph. This “max flow” problem can be solved by

a variety of techniques: Ford-Fulkerson, Edmonds-Karp, push-relabel, and others.

The graph in this case is the control flow graph of a computer program, and the flow

capacity of an edge is simply the instruction time of a basic block, as determined

by low-level analysis. The single-source requirement is clearly met, since programs

always start from exactly one location, as is the directed graph requirement, since

programs cannot run in reverse. Less obvious is the fact that control flow graphs

also satisfy the single-sink requirement because, while there may be multiple return

statements in a program, they can all flow to a single “exit” vertex. (The WCET of

the edges between the return statements and the exit are set to zero.) The acyclic

requirement, however, is one that control flow graphs do not satisfy. Any program

122

with a loop construct will have cycles, defeating algorithms such as Ford-Fulkerson.

Luckily, one of the tactics for solving max flow problems can handle cycles with

aplomb. Called integer linear programming, or ILP, it solves the loop problem by

defining maximum flow according to constraints on the legal flow through the graph.

Accounting for a loop is simply a matter of adding an additional constraint to bound

the amount of flow—that is, the number of iterations—through the loop.

Computing WCET then becomes a problem of translating the control flow graph into

a series of constraint equations and running these equations through an ILP solver to

find the maximum. The paths through the graph are never actually explored; they

are derived implicitly from the constraints, thus giving rise to the term implicit path

enumeration technique, or simply IPET.2

To illustrate, consider the control flow graph of Figure 5.7, whose source code is

given in Figure 5.4. An IPET-based algorithm would add constraints for each ver-

tex in this graph, as shown in Figure 5.8. The constraint on Block 7, for example,

is edge7 + edge8 = edge9, indicating that the incoming flow is equal to the outgo-

ing flow. To account for the loop, an additional constraint for Block 2 is added:

10 · edge10 = edge2, indicating that the flow through Edge 2 is ten times as large

as the flow through Edge 10. Feeding these constraints to an ILP solver would show

that the maximum value of the objective function is 586, meaning that the WCET

of Figure 5.4 is 586 cycles.

An important point to remember is that a tree-based algorithm would produce exactly

the same result. It would also find the result more quickly, since the time it requires

grows linearly as the complexity of the analyzed program increases. By comparison,

2Some research papers refer to implicit path enumeration as the “ILP technique,” but strictly
speaking, this is a misnomer. Integer linear programming is only the method used to find the
maximum flow, not the technique itself. Methods other than ILP could be applied to IPET, as long
as they can handle bounded cycles in the graph.

123

while (someCondition)

if (otherCondition)

variable *= 5;

goto

variable--;

flag = true;

goto

return;

Block S

Entry

Block 1

0: iload_1

1: ifeq -> 24

1

Block T

Exit

Block 2

4: iload_2

5: ifeq -> 15

2 (true)

Block 8

24: return

10 (false)

Block 3

8: iload_3

9: iconst_5

10: imul

11: istore_3

3 (true)

Block 5

15: iinc 3 -1

5 (false)

Block 4

12: goto -> 0

4

Block 7

21: goto -> 0

7

Block 6

18: iconst_1

19: istore 4

6

8

9

11

Figure 5.7: IPET algorithms operate by finding the maximum flow through a control
flow graph, such as the one shown here of the source code in Figure 5.4.

124

/∗ Ob j e c t i v e f u n c t i o n ∗/
max : +b lock1 +b lock2 +b lock3 +b lock4 +b lock5 +b lock6 +b lock7 +b lock8 ;

/∗ Edge c o n s t r a i n t s ∗/
+edge1 = 1 ;
+edge11 = 1 ;
+edge1 −edge2 +edge9 −edge10 = 0 ;
+edge2 −edge3 −edge5 = 0 ;
+edge3 −edge4 = 0 ;
+edge4 −edge7 = 0 ;
+edge5 −edge6 = 0 ;
+edge6 −edge8 = 0 ;
+edge7 +edge8 −edge9 = 0 ;
+edge10 −edge11 = 0 ;

/∗ Loop c o n s t r a i n t s ∗/
−10 edge1 +edge2 = 0 ;

/∗ Bas i c b l o ck c o n s t r a i n t s ∗/
+5 edge1 +5 edge9 −b lock1 = 0 ;
+5 edge2 −b lock2 = 0 ;
+38 edge3 −b lock3 = 0 ;
+4 edge4 −b lock4 = 0 ;
+8 edge5 −b lock5 = 0 ;
+3 edge6 −b lock6 = 0 ;
+4 edge7 +4 edge8 −b lock7 = 0 ;
+21 edge10 −b lock8 = 0 ;

Figure 5.8: To find the maximum flow through a control flow graph, IPET algorithms
transform it into a series of constraint equations that are then fed into an integer
linear programming solver. In this example, Figure 5.7 has been expressed as an ILP
problem in lp solve [192] format.

integer linear programming can be quite slow; it is an NP-hard problem that grows

exponentially [193]. This slothful performance makes IPET impractical for the kind

of interactive analysis described in Section 5.3.

Because IPET produces the same value that a basic structural algorithm gives for the

code in Figure 5.4, and it does so more slowly, it would be virtually useless if not for

one powerful advantage: Adding constraints to an ILP formulation is almost trivial.

The implication is that IPET can handle the false path problem quite elegantly.

To do so, one only needs to supply a constraint indicating that the infeasible path

125

(e.g., B ! C in Figure 5.6) has zero flow capacity.

Knowing what constraint to add, however, is not trivial. Automatic discovery re-

quires extremely complex data flow analysis, while a manual approach—via source

code annotations, for instance—is vulnerable to human error and adds an additional

burden on the user. Unless one of these two approaches is put into place, IPET

offers no improvement and degrades to the same level of pessimism as a tree-based

algorithm.

5.2 The Practice of WCET Analysis

These techniques for static computation of WCET have been circling academia for

over a decade, but for the most part they have failed to migrate into industry practice.

Even the very idea of static analysis, for any purpose, is still somewhat uncommon

outside of the research community [194]. The medical device industry, for example,

has only recently begun to embrace static analysis as a mechanism for detecting

software flaws [195].

In anticipation of a coming acceptance of static analysis in general, and static WCET

analysis in particular, researchers have created various prototypes of software tools

that allow end users to determine the worst-case performance of their code. The

majority of these tools target C, while a small subset are able to analyze Ada and some

less popular languages. A growing number target Java, as discussed in Appendix A.

Compared to other categories of software tools, the number of these WCET analyzers

is actually quite small. Only a dozen or so have ever been built, and a mere fraction

of those are still actively maintained. This section highlights a few of the tools in

this rarefied group, demonstrating how the techniques of Section 5.1 have been put

126

into practice. (For a more comprehensive and detailed feature comparison of current

WCET analysis tools, refer to Wilhelm et al. [175].)

5.2.1 Research Prototypes

One of the earliest manifestations of WCET analysis as a stand-alone tool is Cinderella

(see Figure 5.9), named in honor of the fairy tale heroine who had a critical real-time

deadline. Cinderella is also notable as the first tool to support IPET-based analysis.

Consisting of approximately 10,000 lines of C++ code, it takes as input an executable

file, its source code, and user-specified functionality constraints (in order to deal with

the false path problem, for instance). It then searches for loops and prompts the user

to enter iteration bounds for each one it finds. Finally, it computes the WCET for a

single function based on a model of the Intel i960 processor. Pessimism for Cinderella

is on average about 100% according to benchmarks provided by its authors. (That

is, its predictions are about twice as large as the true worst-case times.)

One of the usability weaknesses of Cinderella is that it stores loop bound information

separately from the source code. Tools such as the Hades Embedded Processor Timing

ANalyzEr [186], or Heptane, popularized the idea of source code annotations, which

help maintain the accuracy of loop bound declarations by binding them to their loop

definitions. For example:

f o r (b = 2 ; b <= NumSamples ; b = b << 1) [11 , pow (2 , (i + 1))]

f o r (i = 0 ; i < NumSamples ; i += b) [(2048 / n l a s t (P , 1))]

f o r (j = i , n = 0 ; n < BlockEnd ; j++, n++) [n l a s t (P , 2) / 2]

. . .

Heptane’s annotations are quite sophisticated because they can express boundaries

127

Figure 5.9: This screenshot shows Cinderella, the first stand-alone tool designed for
static WCET analysis, calculating the best-case and worst-case time for a given C
function.

for non-rectangular loops—that is, nested loops whose inner loop bound depends

on the index of the outer loop index. If the annotations specified only a simple

constant for the bound, such loops would cause a pessimistic WCET because the

true worst-case bound would be much less than the annotation. Instead, Heptane

supports expressions, such as nlast(P, 2), which refers to the upper bound of the

second surrounding loop.

As powerful as these symbolic annotations are, they still depend on manual inter-

vention by the developer. A simple human error when typing the annotation could

lead to an unsafe WCET. More recent tools attempt to determine loop bounds au-

128

tomatically and prevent such mistakes. TuBound [196], for instance, performs loop

bound analysis to determine the IPET constraints for certain kinds of loops, then

inserts these constraints directly into the source code for later processing by a WCET

analyzer.

As a possible sign of maturation in the field of WCET analysis, TuBound is con-

structed in a modular fashion, as are many of its contemporaries. For example,

modularity in the SWEdish Execution time Tool [197], or SWEET, enables different

analysis algorithms and timing models to work together independently. They com-

municate through well-defined data structures that represent the control flow graph

and processor timing model. SWEET supports path enumeration, implicit path enu-

meration, and a hybrid of the two known as the clustered technique [184]. Likewise,

the Open Tool for Adaptive WCET Analysis [198], or OTAWA, is intended to sup-

port many different approaches, including future techniques that have hardly been

explored, such as how to model multiple-issue pipelines and multithreading.

Another tool worthy of note is Chronos [199], which offers some of the most detailed

micro-architectural modeling yet available, including out-of-order pipelines and dy-

namic branch prediction. It is also flexible because it relies on the SimpleScalar

simulator that can be configured to handle different processor architectures. Chronos

is distributed under an open-source license, allowing extensibility to new features and

estimation techniques. Figure 5.10 shows a screenshot of Chronos in action.

5.2.2 Commercial Tools

The long-term goal of almost any of these research prototypes is to find a path to

market. Ideally, a prototype should be able to grow into a commercial-quality piece

of software that is as commonplace and user-friendly as the compiler, debugger, and

129

Figure 5.10: The Chronos analyzer, whose user interface is shown in this screenshot,
takes into account branch prediction and instruction caching when computing WCET.

other tools found in a real-time developer’s toolbox. In the realm of static WCET

analysis, only a handful of prototypes have managed to make the jump from academic

experiment to shrink-wrapped software: Bound-T, aiT, and RapiTime.

Originally developed for timing validation of on-board software in spacecraft, Bound-

T [200] is the first static WCET analyzer to be sold commercially, having entered the

market in 2001. It is based on IPET and is able to determine bounds automatically

for simple counting loops. (Complex loops require special annotations from the user.)

Although Bound-T can target different processors for analysis, it works best only

with simple varieties, such as Intel’s 8051 series of 8-bit microcontrollers, since it

lacks support for cache analysis.

Arriving just two years after Bound-T, the aiT tool [34, 35] is similar in feature

130

set. It relies on IPET and can automatically detect certain types of loop bounds.

For more dynamic sections of code, it requires annotations, but these can also be

used to specify recursion depths and false paths. According to its manufacturer, aiT

produces very tight WCET predictions with an average pessimism ratio of only 10%

for the processors that it supports. The tool also includes several graphical modes

for visualizing hardware states and control flow data, as shown in Figure 2.5.

In a departure from purely static WCET analyzers, the RapiTime tool [201] is built

on the assumption that a complete and accurate timing model of a processor, as

required for static analysis, is not always available. CPU manufacturers may not

want to publish a detailed model of their processors due to trade secrets, or they may

not see sufficient demand to justify the effort. Even when a model is available, it may

be oversimplified, leading to pessimistic WCET estimates.

Instead, the developers of RapiTime argue that the best model of a processor is the

processor itself. The tool relies on the statistics theory of copulas [176] to build up

a model of the processor according to measurements of execution time of sub-paths

in the code. It then performs offline static analysis to determine the overall paths.

Finally, it combines the path analysis information with the measurement data to

capture the worst-case execution time. This hybrid approach is probabilistic and

therefore suffers from the risks of measurement, as discussed in Chapter 2, in that it

may produce an unsafe WCET estimate.

5.3 Interactive WCET Analysis

Despite the sophistication and variety of these tools, they all suffer from a common

weakness: Little or no thought is given to improving the speed of analysis, only its

131

accuracy. A typical example is an analysis framework created by Zhao et al. [202].

For small programs, it can calculate the WCET in seconds, but medium programs

take minutes, and large programs take hours or even days [175].

The sluggishness of these tools means that interactivity is presently impossible. Real-

time system development will never be made interactive if there continues to be a

delay of hours, or even just minutes, during the coding cycle. Developers cannot

afford to wait for a lengthy WCET analysis to complete after every change to a

program. As a result, timing errors will remain invisible until the testing phase, too

late for speedy correction during implementation. The goal of “bug prevention over

bug detection” (page 30) is lost.

Instead, analysis of real-time software should happen in real time. Imagine a devel-

opment environment in which WCET analysis of an entire program takes only a few

seconds. What kind of impact would this have on making analysis more common,

even routine? Would it lead to higher quality code? Would it make real-time software

development easier and more accessible to a wider range of programmers? And are

these programmers willing to give up some analysis accuracy in exchange for analysis

speed?

This dissertation will not answer these questions. Proving beyond doubt that fast,

interactive WCET analysis is demonstrably beneficial is a job left for future work,

perhaps through a series of experiments in human-computer interaction. In the mean-

time, the advantages are assumed to exist, and the truly challenging question is how

to make WCET analysis interactive. The remainder of this dissertation will present

a possible answer and explore what form this interactivity would take. The belief is

that focusing on the speed of analysis, not just tightness, will lead to new and exciting

ways of building hard real-time systems.

132

5.3.1 Back-annotation

As a first step toward interactivity, the practice of WCET analysis needs to move

beyond the assembly language level. Even when a real-time system is implemented

in a high-level structured language, the WCET tools of today force the developer to

think at a much lower level. For example, the aiT tool [35] displays timing data only

in relation to executable machine instructions. The developer must digest assembly

opcodes, hexadecimal addresses, and other implementation details in order to make

sense of the analysis. The abstractions provided by a higher-level language are erased.

Ideally, a WCET analysis tool should instead have a deep integration with the source

language. It should be able to annotate every statement in the source code with

its worst-case execution time. By conducting an analysis at this high level, devel-

opers no longer need to switch periodically between source language and assembly

language. They can remain focused on the original code, leading to a more natural

and productive development process.

This concept, often referred to as back-annotation [193], is essentially a mapping from

analysis results to source code, instead of merely indicating the worst-case time of

the program as a whole. A back-annotation3 of the code in Figure 5.4 would break

down each individual statement to indicate, for example, that the source code lines

of the else branch each have a 150-nanosecond cost.

The mechanics of back-annotation are similar in nature to integrated development

environments such as Eclipse [162], where a Java compiler runs concurrently in the

background to continuously check source code for compiler errors as it is typed. In a

3Once again, the term annotation is overloaded. Chapter 4 used the term to describe source code
information attached to the nodes of a control flow data structure. Appendix B used it in the more
traditional sense of a metadata facility for a programming language. In this case, the word means
something slightly different; it refers to timing information that is woven into a view of source code
or simply displayed in the margin of the view on the appropriate line.

133

similar fashion, a fast WCET analysis tool could run in parallel with a source code

editor, providing immediate feedback to the developer, just as the compiler does.

Instead of compiler errors, however, the feedback would come in the form of worst-

case time information.

This agile approach is in stark contrast to the strict build-then-analyze style of tra-

ditional WCET tools. It aids developers in eliminating overly long critical paths—a

common headache in hard real-time software—before they can occur. For example,

Schoeberl and Pedersen describe a performance benchmark (“UdpIp”) whose esti-

mated WCET is 18 times larger than its observed WCET [135]. The authors note

that the high degree of pessimism was due to the lack of WCET analysis during de-

velopment of the benchmark. If interactive analysis had been available, the developer

would have been more likely to detect the lengthy worst-case path and taken steps

to reduce it, either by refactoring the code or redesigning the program.

5.3.2 Related Work

These ideas of interactivity and back-annotation are not entirely new. Prior work has

danced around the concepts but has not sufficiently explored them. Too often, they

are mentioned only peripherally or as an avenue of future work.

Occasionally, a true implementation will appear, but a key element will be lacking.

Perhaps an interactive environment is presented, but it will operate at the assembly

language level, not the source code level. Other times, back-annotation will be im-

plemented, but there will be no mention of interactivity or of how fast the results can

be produced.

One of the earliest attempts at interactivity came in 1996 when Ko et al. developed

134

a graphical interface for a WCET analysis tool [203]. The interface allowed the

user to select a specific portion of source code for analysis, and the tool would then

return the WCET of the selection. The primary innovation in this work was to

allow specification and presentation of timing predictions at the source code level

while retaining the accuracy of low-level analysis. Back-annotation was not provided,

however, and there was no investigation into the speed of analysis.

Another prototype for an integrated development environment came from Ribeiro

et al. [204]. The aim was to provide continuity in a real-time software project

through the phases of implementation, debugging, and testing. A novel feature in

the environment was a graphical display of control flow showing each source code

element’s contribution to the total WCET. This was one of the very first realizations

of back-annotation, although the data was displayed in a separate window and was

not integrated into an interactive source code editor. There was also no mention of

the speed at which the graphic could be generated.

A step closer toward true back-annotation—that is, into the original source code, not

as a separate visualization—arrived as a side-effect of Kirner’s study of optimizing

compilers in the context of WCET analysis [205]. A prototype tool chain was created

to visualize WCET calculations as back-annotations into source code, as shown in

Figure 5.11. However, the visualization was static text and was not integrated into a

source code editor or other development environment. The calculation method also

relied on IPET and was likely too slow for interactive analysis.

From the Java domain, the research prototype Sk̊anerost was also an endeavor into

interactive analysis [206]. This real-time software development environment combined

WCET analysis and compilation to provide frequent feedback to the programmer,

updating continuously as the source code changes. Sk̊anerost made no attempt at

back-annotation or decompilation and presented analysis results as raw bytecode

135

/∗ p r o c e s s o r : m68000 ∗/
/∗ memory wa i t s t a t e s (r /w) : 0/ 0 ∗/
−−−−− CYCLES(bubb le) = 47034 −−−−−

1 |−−−−−−−−−−−−−−−−−−−−−−−−−−−#d e f i n e N EL 10
2 |−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 |−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 |−−−−−−−−−−−−−−−−−−−−−−−−−−−/∗ Sor t an a r r a y o f 10 e l ement s ∗/
5 |−−−−−−−−−−−−−−−−−−−−−−−−−−−vo i d bubb le (i n t a r r [])
6 | 1 | 16 , 0(1 , 0) −{
7 |−−−−−−−−−−−−−−−−−−−−−−−−−−− /∗ D e f i n i t i o n o f l o c a l v a r i a b l e s ∗/
8 |−−−−−−−−−−−−−−−−−−−−−−−−−−− i n t i , j , temp ;
9 |−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 |−−−−−−−−−−−−−−−−−−−−−−−−−−− /∗ Main body ∗/
11 | 3 | 24 , 0(1 , 0) − f o r (i=N EL ;
12 | 4 | 228 , 100(10 , 9) − i > 1 ;
13 | 2 | 216 , 90(9 , 9) − i−−)
14 |−−−−−−−−−−−−−−−−−−−−−−−−−−− maximum (N EL − 1) i t e r a t i o n s
15 |−−−−−−−−−−−−−−−−−−−−−−−−−−− {
16 | 2 | 180 , 0(9 , 0) − f o r (j = 2 ;
17 | 4 | 3132 , 900(90 , 81) − j <= i ;
18 | 2 | 1944 , 810(81 , 81) − j++)
19 |−−−−−−−−−−−−−−−−−−−−−−−−−−− maximum (N EL − 1) i t e r a t i o n s
20 |−−−−−−−−−−−−−−−−−−−−−−−−−−− {
21 | 16 | 13122 , 0(81 , 0) − i f (a r r [j−1] > a r r [j])
22 |−−−−−−−−−−−−−−−−−−−−−−−−−−− {
23 | 9 | 7614 , 0(81 , 0) − temp = a r r [j−1] ;
24 | 14 | 11988 , 0(81 , 0) − a r r [j−1] = a r r [j] ;
25 | 6 | 6642 , 0(81 , 0) − a r r [j] = temp ;
26 |−−−−−−−−−−−−−−−−−−−−−−−−−−− }
27 |−−−−−−−−−−−−−−−−−−−−−−−−−−− }
28 |−−−−−−−−−−−−−−−−−−−−−−−−−−− }
29 | 2 | 28 , 0(1 , 0) −}

Figure 5.11: A WCET analysis tool from Kirner [205], the output of which is shown
in this figure, could back-annotate source code as a side effect of the analysis process.
It was too slow to be interactive, however, and was not integrated into a development
environment.

instructions.

In contrast to the custom development environments proposed by earlier work, Fauster

et al. showed how to integrate WCET analysis into established, real-world source code

editors [207]. Their prototype was based on the idea that the difference between best-

case and worst-case execution times grows as the number of possible paths through

the program grows. Therefore, reducing the number of paths would bring the BCET

136

and WCET closer together, thereby reducing pessimism of the analysis. To aid in

this approach, they created a plug-in for vim, a popular source code editor, that

would analyze code in the background and locate portions containing more than one

possible control flow path. These portions were then highlighted in vim’s window.

The speed at which this process took place was never mentioned, raising doubt that

it was truly interactive.

A rather unusual approach to interactive WCET analysis came from Zhao et al., who

created a “WCET tuner” that was integrated with a compiler [208]. It was based on

the observation that compiler optimization settings (e.g., space or time) have an effect

on WCET, but the precise effect is difficult to predict. Sometimes it may increase

the WCET; other times it may decrease it. Instead of manually checking all possible

settings for the one that produces the best WCET, the authors created a tool that

uses a genetic algorithm to narrow down the ideal optimization sequence. The tool is

not interactive, though; it merely offers the user an opportunity to adjust the search

parameters. There is no feedback once the algorithm begins its search.

Not one of these prior efforts focused on improving the speed of WCET analysis—a

necessary ingredient for interactivity. Yu and Mitra were one of the few to recognize

the deficiency of IPET in this respect [209]. Even when using ILOG CPLEX, a leading

commercial ILP solver, they noted that solving a WCET problem can take an entire

day. As a solution, they suggested changing the underlying hardware to support a

WCET-friendly instruction set. Their experiments indicated that this change can, in

some cases, reduce analysis time from 24 hours to just a few seconds. However, they

did not consider application of this technique to interactivity and back-annotation.

Among commercial WCET analysis tools, RapiTime is the only product to offer a

feature that comes close to back-annotation. The tool, shown in Figure 5.12, is able to

color-code the worst-case path in the source code. The information does not include

137

Figure 5.12: A rough approximation of back-annotation can be found in the com-
mercial analysis tool RapiTime. It is able to color-code the worst-case hot spots of a
program, as shown on this screenshot.

the actual numeric worst-case times, however, and the color-coding is displayed as

part of a static, read-only report. It is not interactive.

138

5.4 The Road to True Interactive WCET Analysis

Clearly, interactive WCET analysis is far from reaching its full potential. Existing

approaches are too limited; either they do not support true back-annotation, or they

are not fast enough to be interactive. Even the perpetually increasing power of the

modern workstation is unlikely to mitigate the fundamental performance problems in

WCET analysis. Highly multicore processors, for instance, are poised to become the

norm, and a parallelized IPET algorithm executing on one would certainly reduce

analysis time. Yet the advent of faster hardware does not change the fact that IPET

is an NP-hard problem, and analysis algorithms will only grow in complexity, as will

the real-time programs that they target. These complexity increases will very likely

nullify any future speed improvements in workstation hardware.

The simplifying assumptions presented in Chapter 3 offer a way out. By placing a

few pragmatic restrictions on the underlying hardware, as listed on page 36, WCET

analysis becomes more tractable and therefore faster. The following chapter looks

at how to construct an interactive analysis tool—including full support for back-

annotation—by building upon these assumptions.

139

Chapter 6

Clepsydra: An Interactive WCET

Analysis Tool

140

Chapter Summary

Context Building on this idea of interactive analysis, the next step is to ex-
plore and refine techniques for increasing analysis speed. Other im-
portant goals include shielding the developer from the low-level as-
sembly code used for the analysis and integrating the analysis results
into a traditional development environment.

Prior Work One way of providing analysis feedback is to annotate each source
code construct (if statements, method invocations, etc.) with its
worst-case time. Known as back-annotation, this idea is not entirely
new and has been implemented to some degree in earlier research. A
WCET analysis tool from Kirner, for example, includes some basic
WCET information alongside a text dump of the program’s source
code, but this was largely a side-effect of combining the tool with
optimizing compilers. In the commercial space, the only product
that comes close to back-annotation is RapiTime, which is able to
highlight lines of source code that correspond to worst-case hot spots
in execution time.

Problems All prior efforts in back-annotation exhibit two key drawbacks. First,
they are not interactive. Their reliance on IPET means that they
cannot generate WCET analysis results fast enough to provide con-
tinuous feedback. The analysis must be put off until a later phase
of the development cycle. Second, they visualize the results only in
terms of a static, read-only report. There is no attempt to integrate
the results directly into a development environment.

New Claims There are two ways to solve these problems and achieve true inter-
active analysis: Make IPET faster, or make the tree technique more
accurate. Given that IPET is inherently slow, this work claims that
the only solution is to maintain the high performance of tree meth-
ods while improving their accuracy. A new algorithm is presented
that shows how this feat can be accomplished for the special case of a
dual-method cache. The intent is to prove that the high accuracy of
IPET can be achieved using the faster tree-based algorithms. (The
larger problems of garbage collection, polymorphism, and automatic
loop bound detection are left for future work.)

Results Empirical measurements comparing the tree algorithm presented in
this chapter with an equivalent implementation of IPET show that
the new approach attains precisely the same accuracy without sac-
rificing superior speed. IPET suffers from exponential running time
as program complexity grows, while the tree algorithm’s growth is
nearly constant, requiring just milliseconds even at high complex-
ity. The algorithm is then applied to the problem of interactive
back-annotation. An editor plug-in is presented to demonstrate con-
tinuous feedback of WCET analysis results while also shielding the
developer from the underlying machine code.

141

Papers on the theory of WCET analysis are easy to find, but implementations are far

less common. Tools for WCET analysis in the Java domain are even less common,

virtually non-existent. Without working implementations to build upon, finding new

avenues of research and testing new theories are exceedingly difficult. The lack of

implementations also prevents real-time developers from gaining the productivity

advantages offered by Java.

At the same time, research in the theory of WCET analysis tends to converge on low-

level problems such as compiler optimization [210], but these advancements typically

have not propagated into high-level solutions for the real-time software industry. In

a 2003 survey of WCET tool users [99], half of the respondents said that such tools

are lacking:

1. A very rough first estimate

2. Back-annotation of results into the source code

Given these responses, the WCET research community has failed to address certain

needs of real-time practitioners. The vast majority of techniques are concerned only

with obtaining a tight and accurate bound. Likewise, the larger field of real-time

systems research has fixated on schedulability analysis for the past four decades, but

reports of its successful application in industrial settings are quite rare. In fact, it

is easier to find reports of unsuccessful attempts at moving real-time systems theory

outside of the academic environment [211]. There has been little or no attention on

other features that industry desires, such as finding a rough but adequate WCET

estimate very quickly, then back-annotating those results into the source code.

To address these problems, the Volta tool suite introduced in Section 2.4 includes

142

Java bytecode

Control flow analysis

WCET analysis

End-user tool

In
c
re

a
si

n
g
 l
e
v
e
l
o
f

a
b
st

ra
c
ti

o
n

Java processors

Focus of this chapter

Figure 6.1: WCET tools for interactive analysis are built atop the multiple layers of
abstraction shown in this diagram.

a worst-case execution time analyzer called Clepsydra.1 It implements all of the

theory described in Section 5.1 while adding some innovations to improve the speed

of WCET analysis. With these improvements, Clepsydra shows that the interactive

analysis proposed in Section 5.3 is an achievable goal. It also demonstrates the first

implementation of automatic, round-trip back-annotation in a WCET analysis tool.

The sections that follow discuss the design and functionality of Clepsydra and, as

illustrated in Figure 6.1, how it builds upon the foundations of previous chapters.

6.1 An Overview of Clepsydra

The design of Clepsydra revolves around three basic goals:

Shield the developer from assembly code One of the ideals of interactive anal-

ysis is to support high-level languages (see page 31). In keeping with this goal,

Clepsydra hides low-level assembly code and provides WCET analysis results

1A clepsydra is a clock that measures time by the escape of water.

143

entirely within the context of Java. To do so, it relies on Cascade to gener-

ate annotated control flow data structures of the type described in Section 4.2.

Clepsydra then calculates the WCET of each source code element of this struc-

ture. Finally, it maps the WCET information back to the original source code

listing to produce back-annotations. Assembly code is never exposed to the

user during this process.

Provide interactive WCET analysis Most of the existing analysis tools described

in Section 5.3.2 are monolithic, stand-alone programs. In contrast, Clepsydra

is designed to link seamlessly into a software developer’s natural environment:

the source code editor. It is able to place back-annotations directly into the ed-

itor’s window, as shown in Section 6.3, so that WCET information is available

as the program is written. In order to support this kind of interactive anal-

ysis, Clepsydra provides a speedy tree-based algorithm enhanced with certain

abilities for instruction cache analysis. It is as accurate as prior IPET-based im-

plementations [135] but is much faster. (Refer to Section 6.5.1 for performance

benchmarks.)

Expose a modular and extensible structure Like the rest of the Volta tools,

Clepsydra’s architecture is designed for integration and extensibility [212]. It

can supply back-annotations to virtually any development environment that

supports add-on components. It is also distributed under an open-source li-

cense so that any portion of the code can be enhanced or simply exported to an

outside project, facilitating future research. Clepsydra also achieves flexibility

through a modular internal architecture. As discussed in Section 5.1.3, WCET

analysis techniques offer different strengths and weaknesses: Some run fast but

may not find a tight bound; others can be made tighter but require exponential

running time. No single approach is ideal, and for this reason Clepsydra makes

144

analysis techniques pluggable via the Strategy pattern [213]. Users can swap im-

plementations cleanly without having to understand Clepsydra’s internal work-

ings. This flexibility is particularly important with respect to interactivity. Fast

tree-based analysis is used by default for interactive back-annotation, but if the

developer suspects the results are too pessimistic, Clepsydra can switch to a

slower technique for tighter WCET estimation.

Figure 6.2 provides an overview of how Clepsydra combines all of these goals into a

coherent analysis process. The analysis begins when the developer supplies a Java

source file, which is immediately fed into a custom Java compiler that supports WCET

annotations (see Section B.5). Cascade then reconstructs the bytecode output of this

compiler into an analysis-friendly control flow graph or tree. Finally, Clepsydra per-

forms the actual analysis and produces worst-case timing values for every statement

and compound structure in the decompiled source code. The dotted line in the figure

represents this back-annotation from Clepsydra’s output to the source code.

From all this effort, Clepsydra obtains an important and novel result: Back-annotation

becomes interactive. The process shown in Figure 6.2 may seem elaborate, but the

measurements of Section 6.5.1 reveal that this round trip analysis completes in a frac-

tion of a second on modern workstations (depending on program size). Thus, timing

data can be integrated into the design of a hard real-time system as it is constructed.

The effect of code changes on worst-case time can be seen almost instantly. No WCET

tool has ever supported this kind of interactive, closed-loop back-annotation.

145

Java source
(.java file)

Java compiler

Begin WCET analysis

Java bytecode
(.class file)

JODE decompiler

Timing
strategy

Loop
strategy

Clepsydra

Control
flow
tree

Control
flow

graph

Cascade

Final WCET value

Analysis
strategy

WCET
data

B
a
c
k

-a
n

n
o

ta
ti

o
n

Cache
strategy

Figure 6.2: The Cascade and Clepsydra tools work together to provide interactive
WCET analysis with back-annotation, represented in the figure by a dotted line.

6.2 Assumptions and Limitations

One likely reason that interactive back-annotation had not previously been achieved

in WCET analysis tools is the prevalence of C. Its low-level nature, combined with

146

optimizing compilers and diverse processors, makes back-annotation so difficult to

implement properly that most tools have simply avoided it altogether.

Although capable languages other than C have long been available, developers of

real-time systems are a notoriously conservative bunch. There is a tendency to stick

with traditional methods and tools rather than move to unfamiliar ones, even when

the new solutions are more productive than the old [214]. Overriding the legitimate

cautiousness of this risk-averse group requires a language with compelling advantages

and a clear migration path from C.

As noted in Section 3.2, Java fits this mold. It is becoming a legitimate candidate

for real-time systems, and it offers a syntax familiar to C programmers. At the same

time, the rigor of its specification—definite assignment, checked exceptions, and other

safety features—prevent mistakes that C would allow.

In addition, Java bytecode is much closer to the source language than the machine

instructions found in C executables. It allows a near-perfect reconstruction of the

original source, assuming debugging symbols are available. Back-annotation is then

a much simpler process because the bytecode under analysis can be mapped to its

equivalent source code.

This mapping is not feasible for any arbitrary platform, however. Java is more dy-

namic in nature than C, making it difficult to analyze for worst-case execution time.

The Java virtual machine simply offers too many sources of unpredictability. As

outlined in Section 3.4, a promising solution is to deploy Java software to a Java-

specific processor. Such processors eliminate the virtual machine and offer enough

determinism to make Java suitable for hard real-time systems.

Based on these observations, a complete list of Clepsydra’s assumptions can be assem-

bled. It combines the requirements of interactive analysis (page 36) with conventional

147

timing analysis restrictions (page 107). Together, these assumptions provide enough

simplification to allow Clepsydra to support interactivity with back-annotation. They

are, in summary:

• The program under analysis is written entirely in Java.

• The program will execute on a Java chip, such as the aJile or JOP.

• All loop statements have bounded iterations that are supplied to Clepsydra,

either as source code annotations or some other means.

• Recursive function calls are prohibited.

• Dynamic memory heap allocations, as well as garbage collection to free them,

are prohibited.

• Dynamic dispatch is prohibited. Therefore, object-oriented programming, which

relies on dynamic dispatch of virtual methods, is also prohibited.

• Exception handling is prohibited.

These restrictions may seem Draconian and contradictory. For example, Clepsydra

is unable to cope with two of Java’s most celebrated features: object orientation and

garbage collection. Even without these features, however, many of the advantages of

Java over C, such as the high-level analysis described in Section 3.2, remain. And

of course, future research could eventually loosen these restrictions. Experiments in

hard real-time garbage collection, for instance, are ongoing [81, 75]. Approaches for

WCET analysis of dynamic dispatch are also making progress [215, 66]. For now,

these restrictions offer a reasonable compromise for the sake of simplicity, a necessary

trade-off considering the complexity of interactive WCET analysis.

148

6.3 An Editor Plugin for Back-annotation

With these simplifying assumptions in place, interactive back-annotation becomes

feasible. Clepsydra is able to produce a mapping between source code line numbers

and their corresponding WCET values. An interesting problem, then, is how best to

expose this ability to real-time software developers.

One way of providing back-annotation is by integrating with programming tools that

are already in use. Programs like Eclipse [162], NetBeans [163], and Microsoft Visual

Studio provide various mechanisms, known as plugins, for customizing the appear-

ance and behavior of the editing environment. Plugins can therefore be designed to

insert WCET back-annotations directly into the editor window. As the developer

edits the source code, the plugin can run a WCET analysis in the background and

automatically update the back-annotations to match the changes.

As proof of this concept, the suite of Volta tools includes a prototype editor plugin.

This particular prototype is based on the programmer’s editor jEdit [161], but the

approach can be adapted for any tool that allows the contents of its editor window

to be decorated by a plugin.

Figure 6.3 shows a screenshot of the jEdit plugin in action. The red text attached

to each statement, as well as the method as a whole, indicates how much time it

consumes in the worst case. (The times shown in this example are based on the

100 MHz JOP.) Note that these back-annotations were inserted automatically by the

plugin following a WCET analysis of the code. The plugin re-runs the analysis and

generates new back-annotations whenever the developer saves changes to disk.

Looking more closely at Figure 6.3 reveals one of the key benefits of interactive back-

annotation. The screenshot shows two separate implementations of a hash function:

149

Figure 6.3: This screenshot shows a Clepsydra plugin for the jEdit programmer’s
editor. The red text, which was inserted automatically by the plugin, indicates the
WCET of the corresponding line.

one computes a simple checksum; the other computes a more robust but also more

computationally intensive cyclic redundancy check (CRC). Without running the code

or even switching out of the programming environment, the developer knows that the

CRC method has a much larger worst-case execution time: 4.2 milliseconds versus 360

150

microseconds, a ratio of nearly 12. The developer can use this information directly

when designing the real-time system. If, for example, a task requires a worst-case

response time of four milliseconds, the developer will know instantly that the CRC

function cannot be incorporated safely into the task.

The experimental process of creating this plugin helped crystallize the benefits of

interactive back-annotation, but it also unmasked some potential pitfalls in making

the approach practical. One issue is the problem of compiler optimization. A compiler

may, in some circumstances, produce bytecode whose control flow differs slightly from

what is expected. Consider a snippet such as this:

i f (b)

return 0 ;

e l s e

v a l = 10 ;

Many Java compilers would remove the else construct—suppressing the goto instruc-

tion that would otherwise be generated for the if statement—because it is unnecessary.

These sorts of optimizing modifications to the control flow could disrupt Clepsydra’s

back-annotation algorithm. One possible solution is to modify the compiler to dis-

able all such optimizations. However, given that optimization in Java compilers is

usually very limited, a less extreme tactic would simply compare the decompiled code

to the original code. In the rare cases when a discrepancy is found, a warning could

be issued that would prompt the developer to rewrite the code in a manner that is

compatible with Clepsydra’s back-annotation.

Another problematic issue is dealing with limitations of the line number table. When

debugging symbols are enabled, Java provides a table that maps every bytecode

instruction to its corresponding source code statement. This map is indispensable for

151

back-annotation because it indicates on which line of the source code the annotation

should appear. Unfortunately, Java’s line number table only extends to the method

implementation and provides no mapping for the method declaration. Clepsydra

works around this problem by requiring the source code file as input, which it scans to

determine the method declaration line. A more robust workaround would modify the

Java compiler to generate an additional line number mapping for method declarations.

6.4 The Modular Components of Clepsydra

The previous sections of this chapter painted an overview of Clepsydra’s primary

features and limitations. This section peels away these outer layers for a look at how

Clepsydra’s internal architecture enables flexible WCET analysis. It separates the

analysis process into four modular components: an analysis strategy, a loop bound

strategy, a timing strategy, and a cache strategy.

6.4.1 Analysis Strategy

The first example of this flexibility can be found in the way Clepsydra deals with

high-level WCET analysis. Too often in research literature, authors seem to focus on

one single analysis approach and discount the others. A better tactic is to combine

them in some way. For instance, a tree-based approach could be used for very fast

WCET estimation to speed the development cycle. Later, if the developer decides

that the estimation is too pessimistic, more time could be expended on some other

approach, such as IPET, for tightening the bound.

No single approach is ideal, and for this reason Clepsydra makes analysis techniques

pluggable via the Strategy pattern. Developers can switch between them with relative

152

«interface»
AnalysisStrategy

TreeAnalysisStrategy IPETAnalysisStrategy

«interface»
ILPSolver

LPSolveAdapterGLPKAdapter

Figure 6.4: Clepsydra supports interchangeable analysis algorithms by means of its
AnalysisStrategy interface, an implementation of the Strategy pattern. Tree-based and
IPET algorithms are provided by default; more can be added seamlessly. In addition,
the IPET algorithm relies on an Adapter pattern interface for pluggable ILP solvers.

ease, allowing the same Clepsydra framework to be used as existing techniques are

refined and new ones are created.

By default, Clepsydra provides ready-to-use implementations of both the tree and

IPET techniques. It implements the tree technique in approximately one hundred

lines of pure Java code, but its IPET implementation is significantly more complex.

Part of this complexity is due to the graph-based nature of the technique; in addition,

Clepsydra incorporates external C-based libraries to solve the requisite integer linear

programming (ILP) problem, due to the lack of open-source solvers in Java.

Clepsydra relies on the Adapter pattern to provide a common interface to these

libraries (see Figure 6.4), allowing the developer to switch between them as necessary.

For example, a commercial ILP solver, which is usually faster than an open-source

equivalent, can be integrated into Clepsydra by writing a thin adapter for it.

153

Due to the fundamental problems raised in Section 5.1.3, Clepsydra does not include

out-of-the-box support for the explicit path enumeration algorithm. However, it can

be added without any modifications to Clepsydra’s core architecture. The algorithm

would only need to implement the AnalysisStrategy interface.

6.4.2 Loop Bound Strategy

Another example of Clepsydra’s flexibility lies in its handling of loop bounds. Loop

bounds are a prerequisite for WCET analysis, but there is no single “right way” to

determine the maximum iterations of a loop.

Some approaches depend on source code annotations inserted manually by the author

of the code [34, 216, 217]. They require extra effort from the developer and are error-

prone [35], but they make WCET analysis faster and simpler. Other approaches

depend on deep data flow analysis to find loop bounds automatically (if possible).

They prevent errors due to inserting a wrong annotation, but they are quite complex,

difficult to implement, and may substantially reduce the speed of analysis to a point

where interactivity becomes impossible.

Recognizing that no single algorithm is best, Clepsydra factors out loop bound deter-

mination via the Strategy pattern. Developers can plug in a default strategy supplied

by Clepsydra, or they can implement their own without having to understand the

details of Clepsydra’s design. Strategies can also be swapped at runtime to adjust to

the needs of the user.

The default strategy currently provided in Clepsydra is annotation-based. It assumes

that the developer has annotated every loop construct with its maximum number of

iterations. An example of such annotations can be seen in Figure 6.3. The developer

154

has indicated that the loop on line 27, for instance, iterates no more than eight times.

Note that the annotations in Figure 6.3 are not, in fact, legal. Although Java supports

the annotation syntax of lines 11, 22, and 26, the location of these annotations will

cause compiler errors. Currently, Java allows annotations only on declarations, not

on statements, though prior work has discussed the importance of removing these

restrictions on annotation placement, especially for WCET analysis [218]. Benefits

include “for free” syntax checking, type safety, and tool support. Such features have

not been available in the annotation mechanisms of traditional analysis tools.

Therefore, Clepsydra works in conjunction with a version of Sun’s standard Java

compiler that has been modified to allow annotations on statements. It parses the

annotations for syntactical correctness and creates a representation of them in the

Java class file output. The default loop bound strategy in Clepsydra then obtains the

loop bound values by loading the class annotations using BCEL [136], a third-party

tool for accessing Java class files. (Refer to Appendix B for a broader discussion of

WCET annotations in Java.)

This process effectively solves the Turing halting problem for WCET analysis, but it

is a source of human error. There is no way to validate whether the annotations are

correct; Clepsydra must simply trust them. As the code evolves, the developer must

remember to evolve the annotations along with it. If the two ever become out of

sync, the WCET estimation could be extremely pessimistic or, even worse, extremely

unsafe.

A more reliable approach is to attempt some form of data flow analysis to find loop

bounds automatically. Although not every loop bound can be determined this way,

many common loop patterns are amenable to analysis, such as the simple counting

loops of Figure 6.3. Recent work has focused on abstract interpretation to discover

155

the bounds of such loops without the need for source code annotations [219, 178, 220,

179]. Other tactics involve annotations only to describe the range of input variables

(e.g., i1 <= 0 && i1 < str.length) from which loop bounds can then be derived [221].

In either case, the topic of automatic loop bound analysis is a subject of ongoing

research. As it matures, a particular technique can be encapsulated as a loop bound

strategy and integrated into Clepsydra as a replacement for, or perhaps a complement

to, the existing annotation-based strategy. For example, Clepsydra could use an

abstract interpretation strategy for simple loops and a source code annotation strategy

for complex ones.

6.4.3 Timing Strategy

After the control flow has been analyzed and the loop bounds determined, the final

WCET values must be realized for a particular Java processor. This involves obtaining

cycle counts for individual bytecode instructions. Clepsydra relies on the Strategy

pattern to make these counts pluggable, depending on the processor target.

Clepsydra provides a JOP strategy by default. As JOP’s architecture evolves, its

timing may change, but Clepsydra requires only an updated strategy to support the

new design. Likewise, entirely different processors, such as the aJile or Cjip, can be

added with minimal impact on Clepsydra by supplying the appropriate strategy. It

must implement a simple Java interface, as illustrated in Figure 6.5.

Originally, the Strategy pattern for low-level timing analysis was not part of Clep-

sydra’s design. The initial goal was to define an XML schema that would model

processor timing data. In practice, however, encapsulating such data in the static

tree structure of an XML file is troublesome due to state dependencies. For instance,

156

pub l i c i n t g e tCy c l e s (short opcode , boolean cacheH i t)
{

i n t methodLoadTime = getMethodLoadTime (cacheH i t) ;

switch (opcode) {
case SIPUSH :

return 3 ;

case LDC:
return 7 + readWa i tS ta t e s ;

case LDC2 W:
c y c l e s = 17 ;
i f (r e adWa i tS ta t e s > 2)

c y c l e s += readWa i tS ta t e s − 2 ;
i f (r e adWa i tS ta t e s > 1)

c y c l e s += readWa i tS ta t e s − 1 ;
return c y c l e s ;

.

.

.

Figure 6.5: Clepsydra relies on the Strategy pattern to make processor timing defini-
tions easily swappable. This listing shows a portion of the JOP timing strategy.

as shown in Figure 6.5, the cycle timing for a double-word constant push instruc-

tion (ldc2 w) varies depending on the number of wait states in the target processor’s

memory subsystem. Modeling this logic in Java rather than XML is far simpler, and

therefore the Strategy approach is preferable for WCET analysis tools like Clepsydra.

6.4.4 Cache Strategy

The fourth and final modular component in Clepsydra is a method cache strategy.

Without it, Clepsydra would only be able to analyze single methods in isolation.

Analysis of whole programs across method invocations requires a model of the target

processor’s instruction cache. (Refer to Section 5.1.2 for a description of method

caching.)

157

An IPET Strategy for Cache Analysis

Before such a model can be applied to Clepsydra, the underlying control flow graph

must first be modified to represent the effects of the cache. Figure 6.6 shows an

example of these modifications for the code in Figure 4.6. The extra cache miss blocks

in the graph (numbers 8, 9, and 13) represent the alternate path in the control flow

in the event of a method cache miss. These blocks are added to return instructions

as well as method invocations because both can cause cache misses. The execution

time, or “cost,” of control flow passing through the blocks is equal to the miss penalty

alone (i.e., the number of extra cycles needed to load the method), not the total time

for invocation or return.

With the control flow graph adjusted for method cache support, the next step is to

add the appropriate constraints in the IPET analysis to account for the method cache.

For the single method configuration, no additional constraints are necessary because

the miss path must always be taken, and this happens automatically as a result of

finding the worst case path.

For the dual method configuration, Clepsydra’s default cache strategy supports only

the simple analysis described in Section 5.1.2. (It is the same technique first described

by Schoeberl and Pedersen [135].) When the strategy encounters a method invocation,

it first checks whether the invocation occurs within a loop and whether it is the only

one of its type in the entire loop body. (The same method can be invoked multiple

times in a loop body without causing cache misses.) If both conditions are true,

the invocation is a miss on the first iteration but a guaranteed hit on all subsequent

iterations. Clepsydra uses this fact to add special method cache constraints in the

ILP formulation. In the case of Figure 6.6, for example, it would add the following

constraints for the invocation in Block 10:

158

SpeedSensor.getVelocityData(int[],int[],int[],int[])

i = 0;

for (i < 64)

v[i] = computeVelocity(u[i], a[i], dt[i]);

i += 1;

goto

return;

SpeedSensor.computeVelocity(int,int,int)

return startVelocity + acceleration * deltaTime;

Block S

Entry

Block 1

0: iconst_0

1: istore 5

1

Block T

Exit

Block 2

3: iload 5

5: bipush 64

7: if_icmpge -> 37

2

Block 6

37: return

6 (false)

Block 7

10: aload_1

11: iload 5

13: aload_0

14: aload_2

15: iload 5

17: iaload

18: aload_3

19: iload 5

21: iaload

22: aload 4

24: iload 5

26: iaload

8 (true)

Block 9

cache miss

10 (false)

Block 3

30: iastore

Block 4

31: iinc 5 1

3

Block 5

34: goto -> 3

4

5

7

Block 8

cache miss

9

Block 10

27: invokespecial 2

12

13

11

Block 12

0: iload_1

1: iload_2

2: iload_3

3: imul

4: iadd

18

Block 11

5: ireturn

17

14
Block 13

cache miss

15

16

Figure 6.6: To support method cache analysis, control flow graphs must be aug-
mented with cache miss blocks, as shown in this example of the code from Figure 4.6.
Structurally, it is identical to the graph in Figure 4.8 except for blocks 8, 9, and 13.

159

edge9 = edge2

edge12 = (n−1) edge2

where the constant n is the loop bound (64 in this example).

The first constraint states that the flow through Edge 9 is the same as the flow through

Edge 2, meaning that Block 8 will be followed exactly once (that is, a single cache

miss) because Edge 2 will be followed exactly once. The second constraint states that

the flow through Edge 12 is 63 times as large as the flow through Edge 2. In other

words, Block 8 will be bypassed 63 times because there will be 63 cache hits.

For return instructions, Clepsydra considers only leaves in the call tree. (A leaf is

a method that invokes no methods.) Any return instruction in a leaf is always a

guaranteed hit for the dual-block cache, regardless of loop structure. Cascade’s API

makes testing for this condition easy; it requires only a simple expression:

getTree () . g e tMethod Invoca t i on s () . i sEmpty ()

This expression obtains the control flow tree belonging to the return instruction, then

checks whether the set of method invocations in that tree is empty.

Figure 6.7 shows the result of a complete analysis that puts all of these constraints

together. The listing is an ILP formulation by Clepsydra of the control flow in

Figure 6.6. Note that the basic block constraints for the cache misses in this particular

example evaluate to zero. The reason is that the miss penalty for small methods, such

as computeVelocity, is so low that it is masked by the time required for the invocation

itself. Thus, the constraint simply disappears, resulting in an effective cache hit for

invocations and returns in all situations. (Larger methods would result in non-zero

160

/∗ Ob j e c t i v e f u n c t i o n ∗/
max : +b lock1 +b lock2 +b lock3 +b lock4 +b lock5 +b lock6 +b lock7 +b lock8

+b lock9 +b lock10 +b lock11 +b lock12 +b lock13 ;

/∗ Edge c o n s t r a i n t s ∗/
+edge1 = 1 ;
+edge7 = 1 ;
+edge1 −edge2 = 0 ;
+edge2 +edge5 −edge6 −edge8 −edge10 = 0 ;
−edge3 +edge17 = 0 ;
+edge3 −edge4 = 0 ;
+edge4 −edge5 = 0 ;
+edge6 −edge7 +edge11 = 0 ;
+edge8 −edge9 −edge12 = 0 ;
+edge9 −edge13 = 0 ;
+edge10 −edge11 = 0 ;
+edge12 +edge13 −edge18 = 0 ;
+edge14 +edge16 −edge17 = 0 ;
−edge14 −edge15 +edge18 = 0 ;
+edge15 −edge16 = 0 ;

/∗ Loop c o n s t r a i n t s ∗/
−64 edge2 +edge8 = 0 ;

/∗ Cache c o n s t r a i n t s ∗/
−edge2 +edge9 = 0 ;
−63 edge2 +edge12 = 0 ;

/∗ Bas i c b l o ck c o n s t r a i n t s ∗/
+3 edge1 −b lock1 = 0 ;
+8 edge2 +8 edge5 −b lock2 = 0 ;
+13 edge17 −b lock3 = 0 ;
+8 edge3 −b lock4 = 0 ;
+4 edge4 −b lock5 = 0 ;
+21 edge6 +21 edge11 −b lock6 = 0 ;
+44 edge8 −b lock7 = 0 ;
−b lock8 = 0 ;
−b lock9 = 0 ;
+75 edge12 +75 edge13 −b lock10 = 0 ;
+23 edge14 +23 edge16 −b lock11 = 0 ;
+39 edge18 −b lock12 = 0 ;
−b lock13 = 0 ;

Figure 6.7: Clepsydra produces this ILP formulation, shown in lp solve format, after
applying the IPET analysis strategy and a dual method cache strategy to Figure 4.6.

cache miss penalties.)

While this approach produces the expected WCET value, it is based on IPET, which,

161

as discussed in Section 5.1.3, is computationally expensive. Even for relatively small

programs, computing WCET in the presence of method invocations can take ten sec-

onds or more; larger programs may require several minutes even on a fast workstation.

For interactive analysis of real-time software, this delay is unacceptable.

A Two-Pass Variation on the Tree Strategy

To solve this problem, Clepsydra includes a tree-based algorithm capable of analyzing

the dual method cache. It offers accuracy that is identical to the IPET algorithm

but executes in a fraction of the time. (An empirical performance analysis of the

algorithm is provided in Section 6.5.1.)

The algorithm is a two-pass variation of the standard tree analysis approach (i.e.,

recursive descent). In the first pass, it treats all method invocations as cache misses.

It then executes a second pass through the control flow tree and examines only the

method invocations. For invocations determined to be cache hits, it multiplies the

number of hits by the miss penalty for that particular invocation. This penalty is

actually the gain time because the first pass assumed only cache misses. Finally, the

algorithm simply subtracts the gain time from the first pass total to arrive at the

final WCET calculation. Figure 6.8 provides a pseudocode listing of this approach.

A complete implementation can be found in the Volta distribution.

Motivation for the Two-Pass Variation

This two-pass variation of the traditional tree strategy is not intended to be a general-

purpose replacement for IPET. Rather, it is an example of how the tree-based ap-

proach can be refined and extended so that it produces WCET estimates that are

just as accurate as more recent techniques. Other approaches, such as IPET, are still

162

getWCET(node)

i f node i s nu l l return 0

i f node i s IF THEN ELSE
c y c l e s = getExprWCET(node . c o n d i t i o n a l e x p r e s s i o n) +

max(getWCET(node . then b ranch) , getWCET(node . e l s e b r a n c h))

e l s e i f node i s LOOP
e x p r e s s i o n c y c l e s = getExpressionWCET (node . c o n d i t i o n a l e x p r e s s i o n)
c y c l e s = e x p r e s s i o n c y c l e s +

(getWCET(node . l oop body) + e x p r e s s i o n c y c l e s)
∗ node . loop bound

e l s e i f node i s STATEMENT
c y c l e s = getExpressionWCET (node . s t a t emen t e x p r e s s i o n)

return c y c l e s + getWCET(node . nex t)

getExpressionWCET (e x p r e s s i o n)
return sum o f CPU c y c l e s o f a l l i n s t r u c t i o n s i n the b a s i c b l o ck
(assumes a l l i n v o c a t i o n i n s t r u c t i o n s a r e cache m i s s e s)

getGainTime ()
gainTime = 0
f o r each node i n the c o n t r o l f l ow t r e e

i f the node c o n t a i n s a method i n v o c a t i o n
gainTime += number o f cache h i t s o f the i n v o c a t i o n ∗

cache mis s p e n a l t y
return gainTime

getTotalWCET ()
return getWCET(roo t node) − getGainTime ()

Figure 6.8: The standard recursive descent algorithm in tree-based analysis cannot
account for method invocations because method cache hits are not constant across
loop iterations. A two-pass variation of the algorithm, shown here in pseudocode,
solves this problem.

valid and they produce the same quality of results. In fact, when speaking strictly of

accuracy, there is no reason to use this two-pass variation of the tree-based approach.

It will produce the same WCET as an equivalent IPET-based algorithm.

But accuracy is not the only criterion of an analysis technique. As discussed in

Section 5.3, the speed of analysis is also significant, especially when considering inter-

163

active analysis. In this respect, IPET is inferior; it is simply too slow for an interactive

analysis of a non-trivial program, as evidenced by the performance evaluation to be

presented in Section 6.5.1. The past fifteen years of research into IPET have not been

able to overcome the exponential running time inherent to the technique.

Based on these observations, then, there are two overall strategies for achieving fast,

interactive WCET analysis:

• Make a slow but accurate technique fast

• Make a fast but inaccurate technique accurate

The two-pass variation presented in this section is an instance of the latter. The

motivation is that the tree-based technique does not need to achieve an accuracy that

is better than IPET. It only needs to be as good as IPET because, once it achieves

parity in accuracy, it wins the speed contest. The linear running time of the tree

approach makes it superior to IPET, at least with regard to interactive analysis.

In other words, IPET is not the end-all be-all of WCET analysis. Despite the fact that

it has received the majority of attention in the last decade of WCET research, it does

not render other techniques obsolete. The tree-based approach in particular is still

highly relevant for interactive analysis. The challenge now is to improve this approach

so that it brings the best of both worlds: speed and accuracy. The extension presented

here, though non-trivial, demonstrates that such improvements in tree-based analysis

are possible.

164

Future Work in Cache Analysis

Even with the support of this enhanced tree algorithm, there is still much room

for improvement in Clepsydra’s cache analysis. For example, one way to extend

Clepsydra is with analysis of the variable block method cache [222]. It achieves better

overall performance than the single and dual method caches, but it requires a more

careful and complex analysis. Still, it is more WCET-friendly than a traditional

direct mapped or associative cache because the analysis can be restricted to method

invocation and return instructions.

Another avenue of future research is “what-if” analysis. Simply by swapping strate-

gies, Clepsydra could determine which cache architecture yields the optimal WCET

for a particular program. Configurable processors such as JOP could then be fit-

ted with the appropriate architecture. Users could also experiment with uncommon

variations—a triple method cache, for instance—and test their impact on WCET.

Of course, all of this method-based analysis applies only to the instruction cache.

Support for a data cache would require major additions to Clepsydra in the form of

data flow analysis. Future work should not neglect this aspect, however, given that

data caches can greatly improve performance. For example, the data cache in the

picoJava-II processor adds a 34% performance boost over the JOP, which has no data

cache [223].

6.5 Evaluation

As a complement to the guided tour of Clepsydra’s architecture in Section 6.4, this

section evaluates the performance of its implementation for both speed and accuracy.

165

6.5.1 Performance Analysis

One of the key benefits of Clepsydra is interactive development of real-time software,

such as the back-annotation feature described in Section 5.3.1. Given the importance

of speed in interactive back-annotation, the running time of the various WCET anal-

ysis techniques becomes a prime consideration. Almost all prior work has focused

on reducing pessimism in WCET analysis, but there has been little to no emphasis

on reducing its execution time. The idea of near-instantaneous analysis offers the

potential for a new breed of real-time software development tools, such as the editor

plugin described in Section 6.3.

An obvious question to answer, then, is how fast the analysis techniques perform.

Tree-based analysis has long been recognized as the fastest; its running time grows

linearly with the size of the program. In contrast, the IPET technique is slower; it has

in the worst case NP-hard complexity. Before discounting IPET, however, one should

consider the remarkable speed of today’s processors. Could the IPET approach be

fast enough for interactivity on modern workstations, despite its complexity?

Performance measurements with Clepsydra show that this is not yet possible, as ev-

idenced by Figure 6.9. The chart shows benchmarks for three analysis techniques:

the tree technique, IPET using lp solve, and IPET using GLPK [224]. (The seem-

ingly redundant benchmarks for IPET are designed to rule out the possibility that a

lackluster performance of IPET is merely the result of an inefficient ILP solver.) The

benchmarks, which can be found in the Volta distribution, indicate how each tech-

nique performs as the cyclomatic complexity of a contrived input program increases.

All tests were conducted on a 2 GHz Intel Core Duo machine running Java 1.6.0.

The results show that the tree-based technique is the clear winner. Its performance,

while linear in growth, appears virtually constant, requiring only a few milliseconds

166

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Se
co

n
d
s

Cyclomatic Complexity

Tree method
IPET (GLPK)
IPET (lp_solve)

Figure 6.9: Performance testing of Clepsydra shows that the tree-based technique is
the best choice for fast, interactive analysis.

even at high complexity. As expected, the IPET technique is much slower, growing

exponentially with program size. For interactive back-annotation, tree-based analysis

is unequivocally the best choice and deserves greater attention from the research

community.

Figure 6.9 does not consider cache analysis, however; it only gives the analysis speed

for a single method. In the presence of method invocations, there is a question of

whether the tree-based technique’s stellar performance can remain. A speed eval-

uation of all three algorithms was again conducted using the same hardware and

software testbed, this time running a benchmark that invokes methods. The bench-

mark measures the performance of the algorithms under increasing complexity by

increasing the height of the call stack. (For example, a method that calls a method

that calls a method has a stack height of three.)

Figure 6.10 shows the results. Although the presence of methods slowed the per-

167

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Se
co

n
d
s

Call Stack Height

Tree method
IPET (GLPK)
IPET (lp_solve)

Figure 6.10: Even in the presence of method invocations with cache analysis, the tree
technique handily outperforms the IPET alternative.

formance of all techniques, the trends were the same: The tree-based approach is

extremely fast while the IPET approach is exponentially slower. The tree method is

still the best choice for interactive analysis, even with the overhead of method cache

support.

6.5.2 Accuracy Analysis

The primary focus of Clepsydra is to explore the potential of fast and flexible WCET

analysis tools, but the accuracy of those tools is certainly a factor as well. For

WCET, accuracy is normally defined in terms of pessimism—the amount by which

the predicted and measured WCET values differ.

To evaluate the pessimism of Clepsydra, a set of fifteen WCET benchmark programs

was created. It is based on a similar suite of benchmarks from the Mälardalen Real-

168

Discrete Cosine Transform

Fibonacci

Matrix Count

Matrix Multiplication

Binary Search

Bubble Sort

Cyclic Redundancy Check

Nested Search

Simultaneous Linear Equations

Exponential Integral

Janne Complex

Quicksort (non-recursive)

Insertion Sort

Select Smallest

0 2 4 6 8

7.18

6.84

6.63

6.33

3.80

1.77

1.63

0.86

0.43

0.03

0

0

0

0

Figure 6.11: These numbers represent Clepsydra’s pessimism ratio for a variety of
WCET benchmarks. The ratio in each case compares the WCET predicted by Clep-
sydra to the true WCET measured on a 100 MHz JOP.

Time Research Center [225]. (Yet another benchmark suite, called PapaBench [226],

also exists but was not selected for this work.) Provided in the Volta distribution

under a public domain license, it is intended to serve as a de facto standard for

evaluating any Java-based WCET analysis tool, not just Clepsydra.

Figure 6.11 shows the results of running these benchmarks on Clepsydra. For each

benchmark, Clepsydra ran in its default configuration: a JOP processor as the target,

the dual-method cache analysis strategy, manual annotations to detect loop bounds,

and the two-pass tree analysis algorithm described in Figure 6.8. (Clepsydra’s imple-

mentation of IPET is not shown because its results are identical in every case to the

tree approach.)

The benchmarks vary widely. Discrete Cosine Transform, Fibonacci, Matrix Count,

and Matrix Multiplication exhibit the ideal behavior of 0% pessimism because they

169

are simple loops.2 The Select Smallest benchmark, a complex piece of code with

many nested conditionals and loops, fared the worst at more than 700% pessimism.

(That is, the time predicted by Clepsydra was about 7 times larger than the actual

worst-case time measured on the JOP.) The Petri Net benchmark is missing from

these results because it contains a single method 20 kilobytes in size, which overflows

the method cache in the Altera Cyclone configuration of the JOP used in the tests.

The poor pessimism for some of these benchmarks is in part due to their nature.

They are designed to stress typical weaknesses that often afflict WCET analyzers.

The Janne Complex benchmark, for example, has an inner loop whose maximum

number of iterations depends heavily on the outer loop’s current iteration number.

Structural analyzers that ignore data flow, such as Clepsydra, suffer greatly from this

behavior.

Overall, the largest increase in pessimism was often observed to be a result of in-

effective loop bound annotations. The Insertion Sort and Quicksort benchmarks in

particular expose this problem; they contain inner loops whose bounds depend on the

outer loop’s state. The loop bound annotation mechanism currently supplied with

Clepsydra can only specify constant bounds, leading to overly conservative estimates.

Future work should focus on improved data flow analysis and loop bound detection.

Nevertheless, for the benchmarks that represent numerical computations typically

found in real-time systems, such as the matrix and DCT benchmarks, the bounds are

quite tight. The ideal pessimism ratio of 0% is clearly an attainable goal when using

Java-based processors.

2Contrary to Figure 3.8, the pessimism ratio of the Bubble Sort benchmark is not even close
to 0%. The discrepancy exists because the ratios presented here were computed automatically by
Clepsydra, which currently relies on statically specified loop bounds. The results of Figure 3.8 were
achieved by performing a manual WCET computation and assuming that a dynamic loop bound
detector is in place and able to account for the dependency of the inner loop’s bound on the outer
loop’s iteration.

170

6.5.3 Correctness Analysis

In the process of creating Clepsydra, a fundamental question arose: Static WCET

analysis is safe in theory, but is it truly safe in practice? Even if the theory of a

particular analysis technique is sound, the implementation of that technique may

contain bugs that result in unsafe WCET estimation.

The potential for errors during analysis is a serious issue, given that hard real-time

software is typically the foundation of mission- and even safety-critical systems. The

analyzer may check the software for correctness, but what checks the analyzer for

correctness? One might think to apply some formal verification technique to prove

the analyzer’s correctness, but this only shifts the problem, as the question then

becomes how to check the analysis checker, ad infinitum.

This conundrum is, of course, nothing new. Verifying correctness has been a major

concern for the aviation and space industries, for example, where a single failure can

cause millions of dollars of damage and possibly the loss of human life. One solution

that has been applied in these fields is known as N-version programming [227].

This software engineering practice involves N teams of developers working indepen-

dently on N unique implementations of the same program. In the deployed system,

all implementations run concurrently, and when their computations are complete, a

separate program examines the results and decides which answer to accept. For in-

stance, if two implementations of an algorithm agree on a result, but the third one

differs, a voting procedure would reject it as incorrect. The approach results in a

degree of tolerance to software defects—increasing with the size of N—because each

version of the program checks the other N–1 versions.

For some researchers, however, N-version programming is a discredited idea. They

171

argue that the assumption of independent failures among the N versions is statistically

invalid [228]. In other words, different programming teams can make similar mistakes.

The approach may also be rejected because in many cases it is simply too expensive

to be practical. An organization must create a second or third team for the extra

implementations, which may double or triple the cost.

Yet in many cases, N-version programming is a sensible solution. Even researchers

outside the realm of safety-critical and fault-tolerant systems have found it useful.

A book preservation project, for example, has relied on N-version programming to

digitize old texts using two separate character recognition programs [229]. If the pro-

grams disagree, the discrepancy is reported and a human takes over. The approach

works in this case because the programs are commercial off-the-shelf products, not

custom-built, so the total cost of creating the redundant implementations is amor-

tized.

A similar approach can be applied to WCET analysis tools. For instance, if Clepsydra

indicates that the WCET of a task is 10 milliseconds, while two similar tools say that

the value should be 11 milliseconds, the user can reject Clepsydra’s result. In addition

to providing safer WCET analysis for users, this tactic would also help detect bugs

in new analysis tools that are still undergoing development.

Even when these tools are developed in isolation, N-version programming can still

provide benefits when experimenting with new longest path search algorithms. For

instance, creating the two-pass variation of the tree algorithm (see 6.4.4) was aided

by Clepsydra’s ability to switch seamlessly between tree-based and IPET algorithms.

Comparisons with a known good technique led to faster bug discovery and correction

for the two-pass algorithm.

The eventual proliferation of WCET analysis tools will therefore become an instance

172

of N-version programming. Teams of programmers from around the globe will be

working independently to create the same type of tool, each team implicitly pro-

viding a check for the other, helping to ensure that static WCET analysis is safe.

Importantly, the work of creating these N redundant implementations is distributed,

making the cost of N-version programming virtually free. It is also faster and sim-

pler than previous techniques for ensuring accuracy, such as those based on test case

generation [230], because it does not require a vast input space.

Of course, this scenario assumes that a sufficient number of interoperable analysis

tools will one day be readily available, and thus Clepsydra is hopefully only one of

many WCET tools that are yet to come.

173

Chapter 7

Interactive Timing Analysis of

Software Libraries

174

Chapter Summary

Context Libraries are vital to the software development process. By provid-
ing reusable code, they save developers time that would otherwise
be spent creating sorting algorithms and other general-purpose func-
tions. However, most libraries are designed to have good average-
case performance, and little thought is given to their worst-case per-
formance. As a result, the execution time of their operations may be
difficult to predict, making them unsuitable for real-time systems.

Prior Work Prior work in this area is extremely limited. In one study, a set
of trigonometric library functions, which are often used in typical
real-time applications, were parameterized such that they could be
tuned to achieve a balance between accuracy and timeliness. In
other work, a library of collection classes, XML parsers, and other
utilities was implemented specifically with predictability in mind.
Called Javolution, it included special support for the scoped memory
facility of the Real-Time Specification for Java.

Problems The problem with Javolution and similar approaches to real-time
libraries is that they only claim to be predictable. They do not
attempt to provide any guaranteed bound on worst-case execution
time. For example, the liberal use of exception handling in Javo-
lution prevents these guarantees, since no algorithms yet exist for
computing WCET in the presence of exceptions. Its use of scoped
memory, which is very difficult to analyze, is also an impediment.

New Claims For hard real-time systems, where guaranteed predictability is not
just important but crucial, a new approach to software libraries is
necessary. Such libraries should conform to safety-critical specifica-
tions that demand complete WCET analyzability and other forms of
static verification. Achieving this goal demands certain restrictions:
1) The maximum bound of every loop in the library must be known;
2) exceptions are prohibited; and 3) dynamic memory allocations
(after initialization) are prohibited. As a demonstration of how to
create an analyzable library, this chapter presents Canteen, a set of
predictable collection classes. It provides hard real-time versions of
an array, linked list, set, and map, each of which conforms to its
equivalent standard Java interface, including support for generics.

Results The Canteen library demonstrates new techniques for replacing dy-
namic memory allocations with memory pools in complex data struc-
tures. It also shows how to solve the special problem of loop bound
annotations in libraries, in which the true loop bound cannot be
determined until it is paired with user code. Empirical measure-
ments show that these techniques result in predictable performance
and memory usage. Further measurements also show that Canteen
achieves throughput on par with conventional library code, confirm-
ing that speed need not be sacrificed for real-time predictability.

175

Figure 7.1: Conceived by Harvard professor Howard Aiken, the Mark I was a room-
sized, relay-based calculator. (Photograph courtesy of Computer History Museum.)

In the summer of 1944, Grace Murray Hopper reported to the Computation Lab at

Harvard University to help program Mark I, the first large-scale automatic digital

computer in the United States. Programming the 4500-kilogram machine, shown in

Figure 7.1, required punching holes on a piece of paper tape. Because the Mark I was

not a stored-program computer, Hopper had to repeatedly code certain instruction

sequences that were used again and again onto successive pieces of tape. She soon

realized that if new programs could somehow reuse the pieces that had already been

coded, much effort could be saved. Subsequent modifications to the Mark I allowed

multiple tape loops to be mounted and reused [231]. Hopper’s time-saving idea was

one of the very first implementations of a library.

Libraries are vital to the software development process. By providing reusable code,

they save developers time that would otherwise be spent creating containers, iterators,

176

sorting algorithms, and other general-purpose functions. Libraries also improve code

quality: Because they are typically shared among many developers, bugs in libraries

are more likely to be detected and fixed. (This is an instance of Linus’s Law: “Given

enough eyeballs, all bugs are shallow.” [232])

In addition, libraries are more likely to offer higher performance and more features

because they are usually crafted by experts in the library’s domain. An ordinary

developer creating the same code for individual use may not have the required ex-

pertise nor the time to optimize and fine-tune the code. Consider, for example, the

hypotenuse function,
√

x2 + y2, which may be implemented in Java as:

return Math . s q r t (x∗x + y∗y) ;

While this code may seem perfectly valid, it is actually a näıve implementation due

to its susceptibility to floating point rounding errors [233]. Compare it to the code in

Figure 7.2, which shows a much more sophisticated implementation that limits the

rounding error to one unit in the last place. The floating point expert (or experts) who

designed this code even made it adaptive by having it choose between two different

algorithms, depending on the input values, in order to ensure the highest accuracy

in all cases. Developers working on application code would be unlikely to go to such

lengths should they need to write similar helper functions.

This strategy of encapsulating expert knowledge in a library has been repeated many

times over. Libraries for parallel processing are implemented by experts in thread

synchronization and concurrency. Libraries for image processing are implemented by

experts in hidden Markov models and linear transformations. To put it simply, a

library is an expert-in-a-box, ready to be opened when needed [234].

177

/∗ Copy r i gh t (C) 1993 by Sun Microsystems , I n c . A l l r i g h t s r e s e r v e d .
∗ Deve loped at SunSoft , a Sun Microsystems , I n c . b u s i n e s s . Pe rm i s s i o n
∗ to use , copy , modify , and d i s t r i b u t e t h i s s o f twa r e i s f r e e l y granted ,
∗ p r o v i d ed tha t t h i s n o t i c e i s p r e s e r v e d . ∗/

double a=x , b=y , t1 , t2 , y1 , y2 ,w;
i n t j , k , ha , hb ;

ha = HI (x)&0 x 7 f f f f f f f ; /∗ h igh word o f x ∗/
hb = HI (y)&0 x 7 f f f f f f f ; /∗ h igh word o f y ∗/
i f (hb > ha) {a=y ; b=x ; j=ha ; ha=hb ; hb=j ;} e l s e {a=x ; b=y ;}

HI (a) = ha ; /∗ a <− | a | ∗/
HI (b) = hb ; /∗ b <− | b | ∗/

i f ((ha−hb)>0x3c00000) { r e t u r n a+b ;} /∗ x/y > 2∗∗60 ∗/
k=0;
i f (ha > 0 x5f300000) { /∗ a>2∗∗500 ∗/

i f (ha >= 0 x7 f f 00000) { /∗ I n f o r NaN ∗/
w = a+b ; /∗ f o r sNaN ∗/
i f (((ha&0 x f f f f f) | LO (a))==0) w = a ;
i f (((hbˆ0 x7 f f 00000) | LO (b))==0) w = b ;
r e t u r n w;

}
/∗ s c a l e a and b by 2∗∗−600 ∗/
ha −= 0x25800000 ; hb −= 0x25800000 ; k += 600 ;

H I (a) = ha ;
H I (b) = hb ;

}
i f (hb < 0x20b00000) { /∗ b < 2∗∗−500 ∗/

i f (hb <= 0 x 0 0 0 f f f f f) { /∗ subnormal b or 0 ∗/
i f ((hb | (LO (b)))==0) r e t u r n a ;
t1 =0;

H I (t1) = 0 x7fd00000 ; /∗ t1=2ˆ1022 ∗/
b ∗= t1 ;
a ∗= t1 ;
k −= 1022 ;

} e l s e { /∗ s c a l e a and b by 2ˆ600 ∗/
ha += 0x25800000 ; /∗ a ∗= 2ˆ600 ∗/
hb += 0x25800000 ; /∗ b ∗= 2ˆ600 ∗/
k −= 600 ;

H I (a) = ha ;
H I (b) = hb ;

}
}
/∗ medium s i z e a and b ∗/
w = a−b ;
i f (w>b) {

t1 = 0 ;
H I (t1) = ha ;

t2 = a−t1 ;
w = s q r t (t1∗t1−(b∗(−b)−t2 ∗(a+t1))) ;

} e l s e {
a = a+a ;
y1 = 0 ;

H I (y1) = hb ;
y2 = b − y1 ;
t1 = 0 ;

H I (t1) = ha+0x00100000 ;
t2 = a − t1 ;
w = s q r t (t1∗y1−(w∗(−w)−(t1∗y2+t2∗b))) ;

}
i f (k !=0) {

t1 = 1 . 0 ;
H I (t1) += (k<<20);

r e t u r n t1∗w;
} e l s e r e tu rn w;

Figure 7.2: This C code is an excerpt of the hypotenuse function in FDLIBM, a
floating point math library that was later incorporated into Sun’s implementation
of the Java virtual machine. All Java developers now benefit from the optimization
effort that went into this library.

178

7.1 Worst-case Execution Time in Libraries

Today, almost every new program relies on shared libraries for operating system ser-

vices, middleware, graphics, and so on. Popular implementations include the Stan-

dard Template Library for C++, the Base Class Library for .NET, and the Class

Library for Java. They save developers from having to reinvent the wheel when

sorting lists, parsing strings, and performing other common tasks.

While these general-purpose libraries provide a variety of helpful features, they are

typically designed to have good average-case performance, and little thought is given

to their worst-case performance. As a result, the execution time of their operations

may be difficult to predict.

For example, Java’s ArrayList class provides the operation add to append an item to

the end of a list. The operation normally executes quickly and in constant time, but if

the additional item would exceed the current size of the array, a larger array is created,

and the old array’s contents are copied into it. Allocating and copying memory are

expensive linear-time operations, and as a result, the add operation suffers from a

broad variation between its best- and worst-case times.

Figure 7.3 illustrates this behavior in more detail. The data points show the amount

of time that the add operation takes as the size of the list increases. The red data set

represents the typical case of an ArrayList that grows automatically as new elements

are added. Note that almost every operation completes in virtually no time, and yet

a few operations (approximately at list sizes of 500, 2500, and 8000) take far longer.

These points indicate where the ArrayList was forced to create a larger copy of its

internal data store.

The graph reveals a common behavior among standard library operations: Usually

179

Figure 7.3: Traditional libraries are designed for dynamic allocation, as in this exam-
ple of Java’s ArrayList, which leads to extremely high worst-case execution time.

they execute very quickly but occasionally very slowly. In most computing environ-

ments, such a variation is not a serious issue. Many applications can tolerate the

occasional slowdown as long as the average performance is still good. In real-time

systems, however, this unpredictability can cause disaster. If, for example, the soft-

ware controlling a robotic arm assumes that an operation always executes quickly,

any unexpected delay of the operation would break this assumption, disrupting the

delicate timing of the system and potentially damaging the arm or the objects it

manipulates.

For this reason, standard libraries are conspicuously absent in hard real-time systems.

Re-use of code in this domain is typically small-scale and ad hoc so that all of the

details affecting timeliness can be tightly controlled.

180

7.2 Goals for Hard Real-time Libraries

A näıve solution to this problem is to take the conservative approach. The software

could assume that every library operation exhibits its worst-case behavior. While this

tactic prevents scheduling errors by taking into account any unexpected delays, it is

also tremendously inefficient. The system would lay idle most of the time, waiting for

a potential slowdown even when it does not occur. (A faster processor could reduce

the idle time, but this too would be a waste of resources.)

A far superior solution is to design a library specifically for the needs of real-time

systems. The goal is to provide general-purpose, reusable code without sacrificing

guarantees that the system will meet its hard deadlines. To provide these guarantees,

a library must have known execution time.

Knowing the execution time demands that all operations in a library be statically

analyzable for WCET. This requirement allows WCET analysis tools [135, 193] to

verify the timeliness of the system as a whole.

As a corollary, the maximum bound of any loop must be known in order to perform

the analysis. For example, the library may have to provide specific information about

its loops, perhaps via an annotation mechanism like those described in Section 6.4.2.

7.3 Libraries for Real-time Java

This goal of designing libraries for real-time systems is challenging enough, but it is

even more problematic when using Java. The issue of worst-case performance, as in

Figure 7.3, is only part of the problem. The biggest hurdle, especially when targeting

the Real-Time Specification for Java (RTSJ) [29], is that Java programs tend to rely

181

on certain idioms and design patterns that clash with the demands of a real-time

environment.

Specifically, many conflicts arise from the RTSJ’s scoped memory model, a tech-

nique for preventing garbage collection delays [72]. When objects are used in mixed

contexts—that is, shared by heap and non-heap objects or accessed from different

scoped memory areas—the restrictions of the memory model can lead to illegal as-

signment errors, memory leaks, and other such problems. The standard Java library

was never designed to handle these restrictions and therefore does not avoid using

objects in mixed contexts, making the library virtually unusable. RTSJ programs

cannot even use simple mutable Java classes and must resort to providing their own

RTSJ-friendly replacements. (The RTZen middleware library [235], for instance, in-

cludes a custom class called FString as a replacement for the standard StringBuffer

class.)

Although the RTSJ is silent on the problem of mixing the standard Java class library

with a real-time application, this has not stopped developers from attempting to do

so. As the official Java library for over a decade, the standard classes have been

widely tested and are feature-rich, making them very tempting for developers who

wish to avoid implementing and debugging classes that already exist. As a result,

some RTSJ developers attempt to work around the problems instead of simply doing

without the standard class library.

For example, the scoped memory and real-time thread features of the RTSJ are

intended for time-sensitive tasks, such as reading sensor data into a buffer. These

critical tasks may be relatively simple and small, and thus they may not require a

general-purpose library. Instead, the critical threads can transfer data to non-real-

time threads, which can then safely use the standard libraries as needed.

182

While this tactic is feasible, it limits the ability of real-time threads to do useful

work. The increasing sophistication of real-time systems means that these threads

are being called upon to perform increasingly complex tasks that necessitate the use

of a library. Incorporating such libraries into an RTSJ application demands special

compromises and strict programming discipline in order to avoid the complications

of scoped memory. Workarounds include:

• Avoiding sharing across scoped memory contexts

• Performing initial accesses in the proper memory area to prevent timing delays

caused by lazy initialization

• Explicitly switching memory areas to perform certain library operations

These extra steps can adversely impact developer productivity. Having to take special

precautions whenever a library operation is invoked can offset whatever productivity

gains were achieved from using the library. For these reasons, the standard Java class

library is impractical and largely incompatible with real-time applications.

7.4 Related Work

Given that standard libraries are incompatible with the goals of real-time systems,

the strategy presented in Section 7.2—custom libraries designed specifically for pre-

dictability—is an effective solution. Such libraries can, in most cases, implement the

same interfaces as the standard libraries, making their adoption largely a plug-and-

play affair.

While there has been very little prior work in this area, two notable efforts have taken

a similar approach, as described in the following sections.

183

7.4.1 Trigonometric Library Functions

Kirner et al. analyzed the resource requirements of different implementation tech-

niques for mathematical functions [236]. They provided experimental results for

trigonometric functions, which are often used in the real-time domain. Computing the

translational movements of a robot arm, for example, relies heavily on trigonometry.

The classical approach of calculating a trigonometric function is to calculate its Taylor

series iteratively. The advantage is fast convergence: A Taylor polynomial of 14

degrees is sufficient to precisely calculate the trigonometric function of a double value.

The authors compared this common approach against two alternative implementa-

tion techniques: 1) Using a bounded degree of the Taylor polynomial, as not all ap-

plications require full double preciseness, and 2) using precomputed values—a lookup

table—to approximate the result.

Both approaches showed interesting alternatives in the context of real-time comput-

ing. For example, the work demonstrated that trigonometric algorithms may be

parameterized in order to provide a balance between accuracy and timeliness. Due

to the fast convergence of the Taylor series, however, the lookup table is viable only

for relatively small degree (about six) Taylor polynomials.

7.4.2 Javolution

Javolution [237] is another example of a custom library for real-time systems. Re-

leased as an open-source project in 2004, it replaces Java’s standard collection classes

(List, Map, Set, etc.) with custom versions designed to have more predictable response

time. It is intended to eliminate problems such as:

184

• Large arrays allocated and copied for internal resizing, resulting in large worst-

case times

• Long garbage collection pauses due to memory fragmentation when large col-

lections are allocated

• Sudden bursts of computation (e.g., internal rehashing of hash maps or hash

sets)

Figure 7.4 elucidates the latter problem: a delay caused by rehashing. Note that the

performance of the FastMap’s put operation remains relatively constant, while the

standard HashMap class suffers from occasional delays that are orders of magnitude

larger than its expected time.

Javolution also includes special support for the scoped memory model of the RTSJ.

Unlike the standard Java library, which is susceptible to memory leaks and illegal

access errors under the RTSJ, Javolution is scope-safe. It allocates additional memory

for a collection from the same memory area as the collection itself. Consider, for

example, a map allocated in immortal memory:

s t a t i c Map<Foo , Bar> map = new HashMap<Foo , Bar >() ;

In an RTSJ environment, this code will cause memory leaks when entries are removed.

It will also cause illegal assignment errors if new entries are added from a scoped

memory area.

With Javolution, these problems can be eliminated simply by instantiating a different

kind of map:

185

Figure 7.4: Java’s standard HashMap class exhibits poor worst-case running time,
while Javolution’s FastMap class, designed for real-time systems, is much more pre-
dictable.

s t a t i c Map<Foo , Bar> map = new FastMap<Foo , Bar >() ;

With this change, the map’s entries are internally recycled, and new entries are placed

in immortal memory, thereby circumventing the run-time errors that would otherwise

result from using the RTSJ’s memory model.

Javolution achieves these goals largely by judicious memory management, always

favoring time predictability over space efficiency. For instance, it ensures that any ca-

pacity increase of a collection occurs smoothly, allocating in small increments instead

of a single large chunk. In particular, the FastTable class relies on multi-dimensional

arrays to avoid resizing and copying its internal data store.

186

Another instance of Javolution’s space-time tradeoff is its FastMap class, whose entries

each have their own entry table. When the map’s size increases beyond capacity, it

allocates new, larger tables for the entries. Because the old entries are not moved,

the map does not suffer from delays incurred by rehashing.

Despite these advantages, Javolution only claims to be predictable. It does not

provide any bound on worst-case execution time, for example. Its liberal use of

exception handling also prohibits static analysis by the current generation of WCET

tools. In short, Javolution is ideal for soft real-time systems, but it is inadequate for

hard real-time systems where timeliness must be guaranteed.

7.5 Libraries for Safety-critical Environments

Clearly, the idea of a custom real-time library is not entirely new, yet the amount

of prior work is quite limited, and there exist many avenues for improvement. One

overlooked aspect is the need for safety-critical analysis.

Software is safety-critical1 when failure of that software can harm human beings. An

experimental robot car that drives around a test range in a controlled environment

is not safety-critical. A car that drives itself autonomously on public roads, with or

without occupants, is safety-critical.

Creating software for these safety-critical environments is largely a matter of testing

and validation. The goal is to verify, to as high a degree as possible, that the software

will work as intended. This requirement presents a new angle on real-time systems

that essentially asks, “How many ways can this software go wrong?”

In most cases, answering this question is the job of an analysis tool. Such tools perform

1Some researchers use the term “high-integrity” as a synonym for “safety-critical.”

187

static checks to detect inconsistencies and errors in the code, or they may integrate

a formal safety specification into the software development process. Examples of

such tools include the static analyzer SPARK Examiner [238] and the code generator

SCADE Suite [239]. The ability of these tools to verify code correctness is the first

step toward obtaining a safety-critical certification such as DO-178B [38].

Most software libraries, however, are an obstacle toward certification. For instance,

Javolution is incompatible with current analysis tools because it is peppered with ex-

ception handling and, to a lesser degree, dynamic memory allocations. These features

typically are beyond the capabilities of the current crop of safety-critical analysis tech-

niques. Ironically, even the strictly defined RTSJ presents a problem because it still

allows complex behavior such as dynamic class loading and asynchronous transfer of

control (ATC), both of which are extremely difficult to analyze [240].

A typical solution to this problem is to limit the capabilities of the system, preventing

the use of features that might complicate testing and verification. The idea is to

reduce functionality just enough to allow analysis tools to do their job. SPARK, for

example, is a formally-defined Ada-based language that has, according to its author,

“just those features required for writing reliable software: not so austere as to be a

pain, but not so rich as to make program analysis out of the question.” [241] The

restrictions of SPARK allow programs to be proven correct.

A related specification, known as Ravenscar,2 further restricts Ada’s tasking model to

facilitate static analysis [242]. It forbids dynamic priorities, ATC, dynamic interrupt

handling, and other problematic features of task control.

Since the advent of SPARK and Ravenscar in the late 1990s, the pool of programmers

2The Ravenscar profile was named after Ravenscar, England, the town in which it was first
conceived, but a backronym has since been applied: Reliable Ada Verifiable Executive Needed for
Scheduling Critical Applications in Real-Time.

188

who know Ada has shrunk due to its lack of success outside the realm of safety-critical

systems [243]. Meanwhile, Java has exploded in popularity, prompting researchers in

the safety-critical community to ask whether the principles of SPARK and Ravenscar

could be applied successfully to Java.

Some features of Java naturally facilitate the same kind of program verification as

enabled by SPARK and Ravenscar. It disallows pointer arithmetic, for example, and

it enforces definite assignment. At the same time, other intrinsic Java features hinder

static analysis. Dynamic dispatch and garbage collection thwart memory usage anal-

ysis, WCET analysis, and schedulability analysis that safety-critical systems require.

To resolve these problems, several proposals are in development that take essentially

the same approach as SPARK and Ravenscar. Here again, the goal is to eliminate

certain features that are known to inhibit analysis techniques, in effect creating a

subset of the standard Java environment. One such proposal is evolving under the

auspices of Sun as JSR-302 [244], a community-driven process that should eventually

result in a formal specification for safety-critical Java. Mandates of JSR-302 include:

• Garbage collection is not assumed

• All classes are loaded during an initialization phase, not dynamically

• All exception objects must be preallocated

• Three threading models: cyclic executive, single mission, and nested mission

This list is only a sample of the major restrictions of JSR-302; others are still in

discussion. The process has been slowed somewhat by earlier proposals for safety-

critical Java that are merging with JSR-302, such as the HIJA project [245], the

“scalable Java” guidelines from Aonix [246], and Ravenscar-Java [247]. The direction

189

of JSR-302 is also not universally accepted; a proposal by Schoeberl argues against

its approach of subsetting the RTSJ [248, 249].

In the end, however, one of these efforts should culminate in a safety-critical spec-

ification for Java that offers performance and resource consumption comparable to

C and Ada, satisfies DO-178B Level A3 certification requirements, and provides the

same language syntax and build tools of standard Java.

7.6 Requirements for an Analyzable Real-time Li-

brary

Even though a large subset of hard real-time systems falls into this safety-critical

category, existing approaches for software libraries are useless in such an environment.

Even specially crafted libraries for real-time systems, such as Javolution, suffice only

for soft real-time systems, where predictability is important but not crucial, and

formal analysis is an afterthought. For systems where it is not merely important

but must be guaranteed to preserve life and limb, the library must do much more to

facilitate WCET analysis and other forms of verification. Without this extra support,

no strong claims can be made about the safety of the system as a whole.

Based on these observations, a library for hard real-time systems should conform

to the restrictions required by safety-critical specifications such as JSR-302. The key

requirements of such a library can therefore be refined from the broad goals presented

in Section 7.2 into the following:

• All operations in the library must be statically analyzable for worst-case execu-

3Level A is the most stringent safety assessment process in DO-178B; it assumes that failure of
the system would result in a catastrophic condition.

190

tion time (WCET). This allows tools such as WCA [135] or Clepsydra [193] to

verify the timeliness of the system.

• As a corollary to the previous requirement, the maximum bound of any loop

must be known in order to calculate the WCET. Thus, information about all

loop bounds must be incorporated into the real-time library. These bounds

may be supplied through direct manual annotations [218] or by describing pre-

and post-conditions for methods (using a tool such as the Java Modeling Lan-

guage [250]) and then applying a semi-automated prover (such as KeY [251]).

• All code, even low-level device driver code, must be analyzable. Limited hard-

ware interaction such as reading and writing device registers is allowed, but the

methods to do so must have predictable execution time and be visible to the

analysis and verification tools.

• The library must not include any support for exceptions. Although excep-

tion handling improves code quality by enforcing proper error checking, it also

makes the control flow of a program so complex that validating all program

paths becomes an intractable problem. Safety-critical certification standards

such as the DO-178B specifically forbid reliance on exception-based software

due to the lack of pathway predictability that inhibits test coverage analysis

(e.g., MC/DC [252], LCSAJ [253], etc.). Likewise, safety-critical software im-

plementations such as SPARK leave out exceptions because they make formal

verification much more difficult. They create too many possible exit points for

a function, potentially leading to catastrophic failure.4

• Dynamic memory (e.g., new and delete) is unpredictable and very difficult to

analyze, so it too is disallowed. Instead, all data structures must be allocated

4A real-life example of an exception-handling disaster can be found in the first test flight of the
Ariane 5 [254], perhaps the most expensive computer bug in history.

191

during initialization in order to guarantee that the system never runs out of

memory. After initialization, no further allocations are allowed. This restriction

enables formal analysis that would otherwise be impossible with today’s tools

due to the complexity of dynamic memory models.

• The requirement of known execution time has a side-effect on virtual memory. A

common feature in operating systems since the late 1980s, virtual memory has

simplified application development because it gives the developer practically

unlimited memory. This abstraction is not without cost, however: It makes

access to memory very unpredictable. A single machine instruction could re-

sult in several page faults, each costing hundreds of thousands of clock cycles.

Time-predictable execution of tasks therefore requires that virtual memory be

disabled. (This is no great loss because a memory-predictable library makes

virtual memory irrelevant. The total memory consumption is known ahead of

time, and therefore the system can be configured with exactly the amount of

memory that the software requires.)

7.7 Canteen: A Prototype for an Analyzable Li-

brary

To explore how a software library can meet these requirements, the Volta project (first

described in Section 2.4) includes a prototype of a fully analyzable general-purpose li-

brary called Canteen5 [255]. Designed to allow formal analysis for both hard real-time

and safety-critical applications, Canteen provides Java implementations of the three

most common types of collection interfaces: List, Set, and Map. The implementations

5As with all components of the Volta project, Canteen is distributed under an open-source license
to invite critical comparison and make the reported results verifiable.

192

include:

PredictableArrayList A simple random-access sequence that gives precise control

over element ordering. It allows multiple entries of the same element, including

null. It is implemented as a simple linear array.

PredictableLinkedList Identical to PredictableArrayList but implemented as a linked

list. Insertion and removal are much faster, but random access is much slower.

PredictableTreeSet A sorted collection that guards against duplicate elements. As

the name implies, it models the mathematical abstraction known as a set. It is

implemented as a red-black tree in order to ensure a worst-case running time

of log(n) for all operations.

PredictableTreeMap A sorted dictionary-type collection that maps keys to values.

Each key can map to at most one value. It is also implemented as a red-black

tree for the same reason.

These implementations meet all of the requirements spelled out in Section 7.6. They

also offer additional features for convenience, type-checking, and compatibility. To

be specific:

All operations statically analyzable for WCET The classes in Canteen are de-

signed to facilitate static timing analysis. For example, recursion is non-existent,

and all loops have been annotated to provide a finite bound on their iteration

count.

No exceptions thrown after initialization Because exception support makes val-

idation much more difficult, the Canteen classes never deliberately throw unchecked

exceptions, and none of their methods declare checked exceptions.

193

No memory allocation after initialization Following the trend of safety-critical

systems, including the latest specifications such as JSR-302, Canteen avoids

Java’s new operator entirely, relying instead on internal memory pools that

recycle objects in constant time. (During initialization, the classes are free

to pre-allocate memory from Java’s heap for the pools, iterators, and other

necessary structures.)

Support for Generics In early versions of Java, collection classes were simply buck-

ets of objects. Nothing prevented a buggy program from putting, say, integer

objects into a set meant to contain only strings. Such mistakes resulted in run-

time errors that were difficult to isolate. With Java 5, collection classes can

now take parameters that indicate the kind of objects a collection may contain.

These parameters, known in Java as generics, allow the compiler to enforce type-

checking rules on collection class operations. The Canteen library fully supports

this feature and thus facilitates even stronger validation of correctness.

Compatibility with standard Java interfaces The collection classes in Canteen

implement the same List, Set, and Map interfaces declared in Java’s standard

library. The classes can therefore act as drop-in replacements for the standard

collection classes, allowing reuse of existing Java code (with some caveats, such

as the mutable object problem outlined in Section 7.10.1).

With these capabilities, an interactive analyzer such as Clepsydra can immediately

and automatically display the WCET for each line of code, not only in Canteen

itself, but in applications that invoke the library as well. Whereas before only the

application code could be analyzed, now the entire software stack is integrated into

the analysis process: The WCET of the hardware platform is known, the WCET of

the libraries is known, and now the WCET of applications built on top of shared

libraries can be also known.

194

7.8 Prototype Design and Implementation

The collection classes in Canteen are a typical use case that make this prototype a

suitable vehicle for research. They are complex enough to demonstrate how timing

analysis can be applied to software libraries, yet not so simple as to sidestep the

difficult design choices that must be made in order to create a library analyzable for

both hard real-time and safety-critical requirements.

In keeping with this role as a stepping stone to future research, Canteen includes

an API reference with each method fully documented. It also includes a suite of 72

test cases to verify correct functional behavior of each method. A notable benefit

of these test cases is that they can run in “standard” mode, such that new objects

are obtained from the heap, instead of Canteen’s memory pools, and the standard

Java collection classes are used instead of Canteen’s time-predictable versions. All

test cases pass in both modes, demonstrating that the library can act as a drop-in

replacement for the standard Java collection classes.

7.8.1 Analyzable Memory Consumption

The most extreme design element in Canteen is the way it makes memory allocation

analyzable. As noted in Section 7.5, dynamic memory allocation from an arbitrary

heap, along with a garbage collection thread to clean up unused allocations, is ex-

tremely difficult to analyze. Instead, Canteen pre-allocates all of the memory for a

collection class instance when it is first initialized. When the collection object re-

quires memory, it retrieves it from this pre-allocated pool and then returns it to the

pool when finished.

This classic memory pool technique is analyzable because it is much more determin-

195

istic than dynamic heap allocation. With a dynamic heap, each allocation or deallo-

cation could potentially trigger a rearrangement of the heap, whereas in a memory

pool, there is no fragmentation, and blocks are obtained and returned in constant

time [256]. The simplicity not only makes the technique comparatively easy to ana-

lyze but also offers the predictable performance required for real-time systems.

Memory pools are not a new idea. They are common in real-time operating systems

such as IBM’s Transaction Processing Facility. They can even be approximated to

some degree without changing any library code at all. For instance, a standard

Java library class such as ArrayList can be initialized with a user-specified size for its

internal array. If this size is at least as large as the number of elements that will ever

be added to the list, then the slowdown caused by reallocating the array will never

occur. The result is that the list’s add operation behaves predictably, without any

major spikes in its timing, as shown by the green “statically allocated” data set of

Figure 7.3.

The downside, of course, is that pre-allocating all data structures that could poten-

tially be used by a program is an inefficient use of memory. For example, consider

a program that allocates two ArrayLists but never needs both lists allocated at the

same time. A heap approach could use the same memory for both lists, dynamically

allocating and deallocating space as needed. A pre-allocation scheme, on the other

hand, would require about twice as much space because it would allocate memory for

both lists on initialization and never release it.

A more serious problem is that pre-allocation of a standard library’s data structures

is often impossible. Unlike ArrayList, most library classes cannot be manipulated by

the user to pre-allocate all of the memory that they require, simply because they were

never designed to do so. Even when such a feat is possible, knowing how to perform

the proper initialization requires intimate knowledge of a library’s internal structures,

196

negating the benefits of data abstraction that the library provides.

Canteen avoids this latter problem by providing direct support for memory pools from

within the library itself. It abandons dynamic heap management entirely (except

during initialization) and relies instead on memory pools to retrieve pre-allocated

elements for adding to a collection. When an element is removed from the collection,

Canteen returns it to the collection’s pool for later use. This approach provides three

distinct advantages:

• Unpredictable delays that would otherwise be caused by garbage collection and

heap fragmentation are eliminated.

• The total memory consumption is known immediately after initialization.

• The user of the library does not need to be aware of the library’s internal

structures in order to pre-allocate memory.

These benefits do not come without cost, however. Just as loop bounds must be

known at compile time for WCET analysis, the size of every memory pool must

be pre-defined, as well. The developer must supply and maintain this information,

making it error-prone, and the effect of accidentally exceeding the size at run-time

is undefined.6 Having to manage memory as static pools rather than as a dynamic

heap also conflicts with many standard programming techniques such as iteration

and exception handling, as discussed in Section 7.10.1. The Canteen library assumes

that developers are willing to accept these limitations in order to gain the benefits of

memory pools.

6One might consider dealing with memory pool exhaustion by logging a warning and reverting
to dynamic allocation. This option is not viable, however, because inserting dynamic allocation into
the execution path greatly complicates WCET analysis, which is exactly what memory pools are
intended to avoid. Even if analysis is possible, the predicted WCET would be extremely pessimistic
because it would have to assume in every case that dynamic allocation could occur even though it
rarely would.

197

21 3 0 0

list sentinel pool of unused entries

0

Figure 7.5: The memory pool in Canteen’s PredictableLinkedList is attached directly
to the list itself. When elements are added to or removed from the list, they are
simply swapped between the used and unused portions. Clients are unaware of the
pool’s existence because all access to the list is protected by the java.util.LinkedList
interface.

Implementing memory pools in the List classes is straightforward. For the Pre-

dictableArrayList, the memory pool is simply stored at the unused end of the array.

Adding a new element increases the boundary between the used and unused portions

of the array by one. Removing an element shifts all subsequent elements back by

one, and the position that was occupied by the last used element now holds the first

element of the memory pool. The memory pool in the PredictableLinkedList class op-

erates in a similar fashion (see Figure 7.5); the only major difference is that it does

not need to shift elements during removal.

For the PredicableTreeSet and PredicableTreeMap, however, supporting memory pools

is much more involved. These classes are backed by a red-black tree structure, and

the memory pool must be maintained across the elaborate rebalancing operations

that occur after adding or removing elements in the tree. A simple array cannot act

as the pool because adding or removing an element may require shifting elements

(a linear-time operation) as well as updating the left and right links of all nodes to

account for the shift (another linear-time operation).

To preserve the intended logarithmic time for all operations in Canteen’s Set and Map

classes (see Table 7.1), a list-tree hybrid data structure was developed. It consists of

198

2

1 4

3 5

0 0
tree root

list sentinel pool of unused entries

2

1 4

5

0 0
tree root

list sentinel pool of unused entries

3

Figure 7.6: This hybrid list-tree data structure allows binary trees to use memory
pools. In the diagram, element #3 is being removed from a tree of size 5 and maxi-
mum size 7. The element is returned to the pool, and the list pointers are updated
accordingly.

a normal binary tree whose entries contain the usual left and right pointers to child

nodes. In addition, each entry also contains previous and next pointers to form the

doubly-linked list of a memory pool; this allows entries to be removed and returned to

the memory pool in constant time. (If the list were singly linked, the removal would

degrade to linear time.) The red-black tree algorithms in Canteen were then modified

so that these list pointers are properly updated across all rebalancing operations.

Figure 7.6 shows an example of how the list-tree hybrid is altered by the removal of

an element.

199

7.8.2 Analyzable Loops

Memory management is not the only complicating factor in making a software library

analyzable. Loops also present a problem for analysis tools that try to place an upper

bound on execution time. A pure control flow analyzer, such as Cascade, has no way

of knowing how many times a loop will execute in the worst case, making the WCET

of any loop effectively unbounded.

Canteen solves this problem with a conventional source code annotation approach like

the one described in Appendix B. It adopts Java’s built-in annotation mechanism and

extends it to allow annotations directly on loop constructs. This provides “for free”

syntax checking, type safety, and support from existing annotation processors.

The following code snippet shows an example of the annotation syntax:

@LoopBound (max=10)

f o r (i n t i = 0 ; i < 10 ; i++)

. . .

For libraries, however, this annotation is insufficient. The maximum number of iter-

ations for loops in a library cannot be fixed to any hard bound; it depends on how

the library is used. For example, if two instances of an ArrayList have maximum sizes

of 10 and 100, then the loop bound of a search operation for the latter list will be

10 times greater than the former. Therefore, the loop bound annotation of a library

method cannot be specified using a simple constant.

To address this issue, loop bound annotations in Canteen are expressed using specially

named negative constants. These “magic numbers” tell the WCET analyzer that the

true loop bound depends on how the library is used. For example:

200

// Canteen code

c l a s s P r e d i c t a b l e L i s t . . . {

. . .

pub l i c i n t i ndexOf (Object o) {

@LoopBound (max=COLLECTION BOUND)

f o r (i n t i = 0 ; i < a r r a y . l e n g t h ; i++)

. . .

When the WCET analyzer sees this COLLECTION BOUND value, it knows to look at

the code that invoked the method to determine the true loop bound. In Clepsydra,

for instance, the default loop bound strategy will search for a class field in the user

code that invoked the Canteen method. It will then extract the library’s loop bound

from the annotation on this field. For example:

// User code

@Co l l ec t i onBound (max=1024)

pr i va te P r e d i c t a b l e L i s t <I n t > l i s t ;

. . .

i n t i n d e x = l i s t . i ndexOf (. . .) ;

Here, the analyzer would determine that the value of 1024 should be mapped onto

the COLLECTION BOUND symbol for this particular invocation of indexOf.

Although this technique works for the typical usage of collection classes, it has limita-

tions. If, for example, the field is aliased to some other variable, the WCET analyzer

will retrieve the wrong CollectionBound annotation:

@Co l l ec t i onBound (max=1024)

pr i va te P r e d i c t a b l e L i s t <I n t > l i s t ;

201

@Co l l ec t i onBound (max=2048)

pr i va te P r e d i c t a b l e L i s t <I n t > o th e r ;

. . .

l i s t = o th e r ;

In this case, the WCET analyzer will incorrectly use 1024, instead of 2048, as the

loop bound. Likewise, the analyzer would be unable to determine the loop bound

if the library object is declared as a local variable or method parameter instead of

as a class field. In addition, the usual disadvantages of source code annotations still

apply: They must be inserted manually and are therefore error-prone.

Fixing these problems would require a sophisticated data flow analysis tool that does

not yet exist for Java. For now, source code annotations are a workable alternative

that make WCET analysis much faster and simpler.

7.9 Prototype Evaluation

As with any implementation of collection classes, functionality is not the only impor-

tant attribute. Users must also know the expected running time of the collections in

order to choose the correct implementation (e.g., linked list vs. array-based list) and

to predict the performance of programs that use them.

Table 7.1 summarizes the time complexity of the basic operations in each Canteen

class. Note that all of the complexities shown are asymptotically identical to the stan-

dard non-real-time algorithms, demonstrating that performance need not be sacrificed

to ensure predictability.

Naturally, asymptotic notation can only describe the overall complexity of an algo-

202

Table 7.1: Time complexity of the Canteen classes, where n is the element count
and lg(n) is the base-two logarithm of n. The index operation refers to retrieving an
element based on its position in the list.

insert delete search index
PredictableArrayList O(n) O(n) O(n) O(1)
PredictableLinkedList O(1) O(1) O(n) O(n)
PredictableTreeSet O(lg(n)) O(lg(n)) O(lg(n)) N/A
PredictableTreeMap O(lg(n)) O(lg(n)) O(lg(n)) N/A

rithm. The true performance can vary greatly, even between two implementations

of the same basic algorithm. Canteen’s performance should therefore be analyzed in

more detail.

7.9.1 Performance Analysis

One way to compare the performance of Canteen versus existing collection class li-

braries is with simple benchmarks. Canteen includes a set of benchmark programs,

each of which measures the execution time of a particular operation. Due to the in-

terchangeable nature of Java’s collection class interfaces, this same set of benchmarks

can be run against other libraries for an objective comparison.

Toward that end, an experiment was conducted with the following libraries:

• Canteen

• Class Library for Java 1.5 7 (the java.util package)

• Javolution 5.2.6 (the javolution.util package)

The benchmarks were run with each of these libraries on a Sun Netra T2000 (config-

ured with 1.2 GHz UltraSPARC T1 processors) using the Sun Java RTS 2.1 virtual

7In this section, the “Class Library for Java” is referred to simply as “Java.”

203

Table 7.2: This table lists the four types of collection classes measured in the bench-
marks, along with a corresponding implementation of that type from each library.

Type Canteen Java Javolution
random-access list PredictableArrayList ArrayList FastTable

linked list PredictableLinkedList LinkedList FastList

map PredictableTreeMap TreeMap FastMap

set PredictableTreeSet TreeSet FastSet

machine and the Solaris 10 5/08 operating system. The RTS was chosen because

it offers a common platform on which all three libraries can run, thus making the

results comparable. (Java processors currently do not support the RTSJ features

that Javolution requires.) RTS also provides high-resolution timer services that make

the System.nanoTime() call, which the benchmarks rely upon, accurate to around four

nanoseconds. To further improve accuracy, the RTS was configured to launch in inter-

preted mode (-Xint), which disables the just-in-time compiler and the unpredictability

it might otherwise create.

For each library, the four collection types in Canteen were measured along with

comparable classes for Java and Javolution, as described in Table 7.2. (For Java,

more than one map class is available, but the TreeMap was chosen for comparison

because it implements the same red-black tree algorithm found in Canteen’s Pre-

dictableTreeMap.)

For each of the four collection types, four operations were measured:

Append Adds a new element to the end of the collection.

Insert Inserts a new element into the collection at a random location. (For lists, a

new element may be inserted into the same location during the same test. For

maps and sets, the elements are added in a random order, but never the same

element twice.)

204

Search Retrieves a random element from the collection or, in the case of a set col-

lection, tells whether a random element exists in the set. (The same value may

be searched for more than once during same test.)

Delete Removes a random element from the collection. (For lists, an element may

be removed from the same location during the same test. For maps and sets,

the elements are removed in a random order, but never the same element twice.)

These are by far the most common and most vital operations provided by a collection.

Limiting the scope of the measurements to just these four allows the performance

evaluation to be nearly comprehensive yet relatively small and simple.

The results can be seen in Figure 7.7. Each chart compares the raw throughput

of the libraries for the four operations of a particular collection type. The values

represent 10,000 invocations of the operation, averaged across three trials. For the

operations that were randomized—insert, search, and delete—the same seed for the

random number generator used in a particular benchmark was preserved across all

three libraries, thereby ensuring fairness of the results.

For the random-access list, Canteen and Java show about the same performance,

although Java beats Canteen in the insertion and deletion tests because it can shift

elements more quickly using the System.arraycopy method. Canteen is unable to em-

ploy this method because it is native code and effectively unanalyzable for execution

time.

Javolution fares worse than either Canteen or Java, especially in the insertion and

deletion tests. The poor showing can be attributed to its use of the RTSJ API for

memory management which, while making Javolution compatible with the RTSJ’s

scoped memory model, slows performance considerably whenever the list capacity

must change.

205

append

insert

search

delete

0 200 400 600 800 1000 1200

Random-access List

Execution time (milliseconds)

append

insert

search

delete

0 200 400 600 800 1000 1200

Linked List

Execution time (milliseconds)

append

insert

search

delete

0 10 20 30 40 50 60 70

Map

Execution time (milliseconds)

append

insert

search

delete

0 10 20 30 40 50 60 70

Set

Execution time (milliseconds)

Canteen Java Javolution

Figure 7.7: These measurements show the time taken for the primary operations—
append, insert, search, and delete—of the collection classes in Canteen, Java, and
Javolution.

For the linked list, the absence of the arraycopy discrepancy makes the performance

of Canteen and Java almost identical. Again, Javolution is a different story. It is

much slower because it uses scoped memory to manage the size of the list. Its search

operation also suffers because the design expects the JIT to perform method inlining.

In this case, however, the benchmarks ran with the JIT disabled, as would be the

case for safety-critical systems or a Java processor.

For the map and set collection types, the trends are reversed. Canteen outpaces Java

in every test, simply because it pre-allocates collection elements whereas Java allo-

cates them on demand. The two algorithms are otherwise nearly identical. Javolution

redeems itself in these benchmarks, but it implements a hash-based algorithm, rather

than the tree-based algorithms of Canteen and Java. Although this approach nets a

206

performance gain, it does so at a cost of predictability, as revealed in the next section.

7.9.2 Predictability Analysis

Since Canteen is intended for hard real-time and safety-critical systems, its pre-

dictability is of prime importance. Therefore, in addition to the overall throughput

of the library operations, their variability in execution time was also measured. An

experiment was conducted, under the same hardware and software conditions of Sec-

tion 7.9.1, to examine the behavior of the classes shown in Table 7.2. (The set classes

are absent from the experiment because each of the three libraries implements sets

as maps internally, making the set benchmarks redundant.)

The figures in this section show the results of the experiment. All measurements

represent the execution time for an append operation when the collection contains

the given number of elements. Other operations could have been measured, but

most would yield similar results, and thus the append operation was chosen as a

representative sample. (The measurements do not include the first five iterations in

order to eliminate the effect of CPU caching in the test system. Such cache effects

disappear when running on a Java processor.)

For the random-access list, the results given in Figure 7.8 expose the underlying de-

sign of the collection classes. Java and Javolution both experience occasional but

extreme delays as their internal array grows to accommodate the size of the collec-

tion. Interestingly, Java exhibits a steady geometric expansion of these the delays,

owing to the fact that its backing array starts at a size of ten and, when necessary,

increases by 50%. The need to dynamically adjust the capacity destroys any sem-

blance of predictability in these two implementations. Canteen does not suffer from

this drawback and has a near-constant execution time without any spikes.

207

0

50

100

150

Random-access List Append

E
xe

cu
ti
o
n
 t

im
e

(m
ic

ro
se

co
n
d
s)

Canteen Java Javolution

1000500

Size of list (number of elements)

Figure 7.8: These measurements compare the predictability of the append operation
for the array-based list classes in Canteen, Java, and Javolution. Each measurement
represents the time taken for an append when the list contains the given number of
elements.

The results for the linked list, shown in Figure 7.9, provide further evidence for the

predictability of Canteen and the unpredictable jitter of Java and Javolution. The

latter two libraries dynamically allocate new nodes for the list, causing occasional

spikes in execution time. In the case of Javolution, the spikes are shorter and less

frequent due to its use of RTSJ’s scoped memory feature, which allocates new list

nodes in a pre-allocated region of memory. As in the previous benchmark, however,

Canteen surpasses both Java and Javolution in speed and predictability. Its execution

time is virtually constant throughout all runs.

Finally, the map benchmark reveals some key similarities as well as some fundamental

differences among the three libraries. The Java and Canteen libraries, for instance,

are remarkably similar in execution time, as illustrated in Figure 7.10. In fact, the

patterns are nearly identical because both libraries implement the same red-black tree

algorithm. (Java is slightly slower and less deterministic due to its dynamic allocation

of new map entries.) The shape of the graph exhibits an unmistakable logarithmic

208

0

10

20

30

40

50

Linked List Append

E
xe

cu
ti
o
n
 t

im
e

(m
ic

ro
se

co
n
d
s)

Canteen Java Javolution

1000500

Size of list (number of elements)

Figure 7.9: These measurements compare the predictability of the append operation
for the link-based list classes in Canteen, Java, and Javolution. Each measurement
represents the time taken for an append when the list contains the given number of
elements.

pattern, just as the algorithm is designed to produce. This deterministic behavior is

particularly advantageous for real-time and safety-critical systems.

Javolution is another story entirely. In fact, the results of its map class benchmarks

are so different that they had to be presented separately as Figure 7.11. On average,

Javolution performs much better than either Java or Canteen, but this is only because

it implements its map as a hashtable rather than a red-black tree. In exchange for

this improved overall performance, Javolution’s map is extremely jittery, at times

taking an order of magnitude longer than Java or Canteen to complete the same

operation. It provides no guarantee on predictability because an unlucky distribution

of hash coding could result in degraded performance. In other words, the performance

depends heavily not on the characteristics of the algorithm but on the data supplied to

it. Such behavior is extremely difficult to analyze for hard real-time and safety-critical

requirements.

209

0

20

40

60

80

100

120

Map Append

E
xe

cu
ti
o
n
 t

im
e

(m
ic

ro
se

co
n
d
s)

Canteen Java

1000500

Size of map (number of entries)

Figure 7.10: These measurements compare the predictability of the append operation
for the tree-based map classes in Canteen and Java. (Javolution’s measurements are
in Figure 7.11.) Each measurement represents the time taken for an append when
the map contains the given number of entries.

Javolution also depends on RTSJ’s scoped memory management to eliminate the

need for a garbage collector. While the absence of a collector should improve overall

predictability, there is still no guarantee on the worst-case execution time of Javolu-

tion’s operations. There are no existing algorithms for static WCET analysis in the

presence of scoped memory.

In summary, Java has the highest throughput overall, while Javolution has the highest

variance. Canteen is by far the most predictable of the three libraries while still

maintaining, and sometimes exceeding, the performance of the others. It is the best

solution for obtaining tight estimates on worst-case execution time.

210

0

1,000

2,000

3,000

4,000

5,000

6,000

Map Append

E
xe

cu
ti
o
n
 t

im
e

(m
ic

ro
se

co
n
d
s)

Javolution

1000500

Size of map (number of entries)

Figure 7.11: These measurements show the predictability of the append operation for
the map class in Javolution. (It is presented separately from Figure 7.10’s Canteen and
Java measurements because of the substantially different results.) Each measurement
represents the time taken for an append when the map contains the given number of
entries.

7.9.3 Heap Allocation Analysis

In addition to predictable performance, a library for hard real-time systems should

also have predictable memory consumption. The safety net of virtual memory cannot

be assumed, as discussed in Section 7.6, and therefore a bound must be placed on the

amount of physical memory required by the application.

Luckily, the memory pool technique in Canteen (see Section 7.8.1) creates as a side

effect a natural bound on memory consumption: The amount of heap memory allo-

cated after initialization is equal to the maximum amount of heap memory that will

ever be required by Canteen. Other libraries, including Java and Javolution, offer no

such guarantee and are therefore inappropriate for hard real-time and safety-critical

systems.

To support these claims, a simple experiment was conducted to examine the mem-

211

Memory Consumption of Random-access Lists

M
em

o
ry

 c
o
n
su

m
p
ti
o
n

Time

Canteen Java Javolution

Figure 7.12: These measurements show how memory consumption varies as a random-
access list is modified in each of the three libraries. Java and Javolution are erratic,
while Canteen’s memory usage is predictable and bounded.

ory allocation behavior of the three libraries while running on the Java Standard

Edition 1.6.0 virtual machine. The random-access list collection was used as a repre-

sentative sample. In the experiment, 500,000 elements are added to the list and then

removed one by one. This cycle is repeated three times. To collect memory statistics,

the MemoryMXBean facility was invoked after each change to the list. To isolate the

libraries from each other, the VM was restarted on each run. (The complete source

code for this benchmark program is provided in the Volta distribution.)

Figure 7.12 shows the results of this experiment. The most visible characteristic of

the measurements is the high-frequency jitter in each line. This sawtooth pattern

is merely an artifact of collecting and recording memory statistics during the run.

Short-term garbage is created (and then quickly collected) as a byproduct of this

process.

The larger variations in the graph are the more important observation. The Java and

Javolution benchmarks exhibit large swings in memory usage over time. Surprisingly,

the usage increases even when elements are being removed from the list. Both Java

212

and Javolution fail to reach a steady state in memory consumption even though the

same addition and removal cycle is repeated three times. In contrast, Canteen is

much more predictable; its memory usage pattern is nearly constant.

7.10 Restrictions of an Analyzable Library

The benefits provided by Canteen are not without cost. It introduces subtle but seri-

ous conflicts that arise when memory pools are used in object-oriented environments

such as Java. This section summarizes the fundamental issues and major challenges

in designing a library specifically for hard real-time and safety-critical systems.

7.10.1 Memory Pool Restrictions

Without dynamic creation of objects, Java becomes a restricted subset of itself. Re-

cent work on real-time garbage collection tries to relax this restriction [257, 258, 259],

but the allocation and deallocation rate must still be known so that garbage collection

can be scheduled. The memory pool approach of Canteen, provided as a substitute

for garbage collection, introduces special problems for object-oriented libraries, par-

ticularly in the areas of iterators, object mutation, and element replacement.

Iterators

As required by most safety-critical software specifications, Canteen never allocates

memory from the heap after initialization, which greatly simplifies analysis and val-

idation. Instead, it pre-allocates all elements in a memory pool during the start-up

phase, up to a user-defined maximum size. When the user needs to add a new ele-

213

ment to a collection, it can be retrieved from the pool in constant time. When the

element is removed, it is recycled back into the pool, again in constant time. (Note

that array-based collections may require an additional linear time algorithm in order

to perform the insertion or deletion of the element within the array. However, this

time can be bounded through static WCET analysis.)

In addition to the elements of a collection, the collection’s iterator objects cannot be

dynamically allocated; they must be pre-allocated. This presents a problem because,

with current analysis tools, the number of iterators to pre-allocate is unknown. Simply

disallowing iterators would not be appropriate, given that the iterator design pattern

is so prevalent in Java.

Canteen works around this problem by pre-allocating a single iterator per collection

object and returning this object whenever an iterator is requested. The shared iterator

is reset to its initial state on each request. Although this approach solves the problem

in the majority of usage patterns (assuming single-threaded execution), there may be

corner cases where an iterator is requested while it is already in use. When this

happens, the state of the iterator will be unexpectedly reset, causing run-time errors

that are difficult to detect and prevent.

Object Mutation

Another complication of memory pools is that all elements stored in a collection must

be mutable. If the elements are immutable, their state will never change, having been

allocated and initialized to a default state during the library’s initialization phase. As

a consequence, none of Java’s standard data type wrappers, such as Integer, Float, etc.,

can be used in Canteen. Users must instead write their own data type wrappers whose

state can be changed. Users must also be careful to reset this state when retrieving

214

an element from a memory pool. (Unlike objects allocated with the new operator, an

object in Canteen may have been recycled from a previous use and its fields might

not be zero or null.)

Furthermore, objects obtained from a memory pool must always be added back into

the collection from which they came. If the client mistakenly adds an element to some

other collection, memory leaks will occur. Users must also be careful not to access an

object once it has been removed from a collection. It will be recycled back into the

memory pool and could therefore be in use by some other part of the code, leading

to data corruption through concurrent access.

Element Replacement

Yet another issue in memory pool management is element replacement. The List

and Map interfaces allow the user to replace an existing element with some other

element. The methods for performing this replacement—get for lists and put for

maps—are potentially dangerous in the presence of memory pools. The root of the

problem is that replacement elements cannot be created at run-time due to memory

allocation restrictions. Instead, the replacement element must come from a memory

pool, and pools contain only enough objects for the maximum declared capacity of

their corresponding container.

Replacing elements under these circumstances may cause memory leaks and null

pointer dereferencing. For example, consider a list containing a single element and a

maximum size of two. A user might request an object from the memory pool in order

to replace the existing element. If this happens, there will be no more free objects

in the memory pool, even though the user may assume that another object remains,

given that the list has not yet reached its maximum size.

215

There are various potential solutions to this problem, although none is satisfactory.

One possibility is to perform a static analysis on the code to predict how many times a

replacement method is called, then pre-allocate an object in the memory pool for each

call. This approach could be very wasteful of memory, however. Another solution

is to disallow element replacement altogether, but there are legitimate reasons for

replacement, such as swapping two elements in a list. Also, the Map.put method

is used not only for replacement; it is also the primary mechanism for adding new

elements.

Canteen relies on none of these solutions. Instead, it is based on the observation that

element replacement is usually necessary only because the Java objects placed in a

container are typically immutable (e.g., Integer, Float, etc.). Since the requirements

of our library permit only mutable objects, the need for element replacement is sub-

stantially reduced. Therefore, the library simply requires that an object passed to

the set method must have been obtained from the list itself and not its memory pool.

Likewise, the put method must only be used for swapping elements or adding new

ones. Additional support for element replacement is relegated to future work.

7.10.2 Exception Handling Compromises

As discussed in Section 7.6, the Canteen library explicitly avoids exception handling in

order to facilitate program verification and timing analysis. During the initialization

phase, however, which does not require timing analysis, the container classes are free

to throw exceptions. Also, the classes may inadvertently throw unchecked exceptions,

such as a null-pointer exception an or array index out-of-bounds exception, if they

are initialized or invoked incorrectly.

In certain situations, the lack of exception handling in Canteen means that error codes

216

must be used (e.g., null object values or negative integer values). Substituting error

codes for structured exception handling is error-prone, since the user could forget to

check a return value for an error. Worse, errors may sometimes have to be suppressed

entirely in order to maintain compatibility with existing collection interfaces. For

example, the add(int,E) method in the List interface returns void, relying on thrown

exceptions to report errors. Therefore, users of Canteen have no way to check for an

error when invoking this method.

A pragmatic but insufficient solution is to pre-allocate the data structures for all

possible exceptions in immortal memory and reuse them. A better approach is to

avoid exceptions by a defensive programming style. The absence of runtime exceptions

can then be proven formally [260].

7.10.3 Unimplemented Methods

In the Java collections API, certain interface methods are declared “optional.” For

example, a collection that implements an immutable list of objects has no reason to

implement the List.set operation. Such optional operations are expected to throw

UnsupportedOperationException.

In Canteen, all optional operations are implemented with three exceptions: Collec-

tion.addAll, Map.putAll, and Collection.containsAll. The add operations were excluded

because adding elements from some arbitrary collection, instead of the collection’s

own memory pool, could cause memory leaks. Also, the maximum size of the op-

eration’s collection parameter must be known for WCET analysis, but current tools

cannot detect loop bounds for a polymorphic collection object. The containsAll oper-

ation could not be implemented for this reason, as well.

217

In addition, two mandatory operations could not be implemented in Canteen due to

the restrictions of analyzability. Specifically, the toArray and subList methods would

require allocating memory after initialization, a prohibited act in Canteen. (This

restriction could be bypassed by pre-allocating return values for the operations, but

this would greatly increase memory requirements, and it could cause dangerously

unpredictable results if clients modify the shared return value.)

218

Chapter 8

Examples of Interactive WCET

Analysis

The previous chapters have concentrated on the theory of interactive WCET analy-

sis, largely avoiding a proper discussion of the practical implications. This chapter

changes course by focusing exclusively on how the presented ideas can help solve

real-world problems. The sections that follow examine two typical scenarios that de-

velopers may face when creating real-time system software: selecting a hash function

and polling a sensor.

8.1 Hash Functions

A hash function transforms a large piece of data into a smaller representative sample.

It is most common in a hash table, where the hash of a search key corresponds to an

index. It may also be used to compute a hash sum or, as it is more popularly known,

a checksum. Checksums detect accidental errors that may occur when transmitting

219

or storing an arbitrary block of digital data. If the previously saved checksum does

not match the recomputed one, data corruption has likely occurred.

Figure 6.3 shows a Java implementation of the simplest possible checksum function.

It merely iterates through every byte of the array, adds its value to a running total,

and returns the result. The implementation also includes a loop bound annotation

so that Clepsydra may analyze it for WCET.

This type of hash function is easy to implement, but it may fail to detect errors

that affect many bits at once, such as a change in their order. To address this

weakness, a hash may instead be computed with a more complex function called a

cyclic redundancy check, or CRC. It is especially adept at detecting errors due to

noise in a transmission channel. An implementation example of a 16-bit CRC can be

found in Figure 6.3 as well.

Naturally, the more complex CRC function would require more execution time than a

simple summation, but precisely how much more is not obvious. This uncertainty is a

problem because the performance of the hash algorithm has a direct impact on overall

throughput. Consider, for example, a communications device that streams data to

another device. It would likely implement some kind of hash function in its protocol

in order to handle transmission errors. Now imagine that the design specifications

required this device to transmit a 64-kilobyte block of data every 50 milliseconds.

Which hash function should be used?

With Clepsydra, the answer can be found directly. First, assume that the developer

of the communications device has written the code shown in Figure 6.3. Finding the

execution time of both hash functions for this particular design would simply require

changing the MAX LENGTH constant to 65,536 (the number of bytes in 64 kilobytes).

The Clepsydra plug-in would then re-annotate each line of the code, revealing im-

220

mediately that the worst-case time of the summation checksum is 26 milliseconds,

while the CRC’s is 275 milliseconds. (These times assume a 100 MHz JOP as the

target processor.) The latter option would then have to be rejected because it exceeds

the 50-millisecond deadline. Note that there was no need to run the code or even

switch to a separate analysis tool. The decision was made without ever leaving the

programming environment.

As a simple test to verify these results, a small utility was created to measure the speed

at which the two hash functions execute on a physical processor. Figure 8.1 shows

a screenshot of this utility while monitoring a 100 MHz JOP, which was executing

the checksum method in an infinite loop. The dial on the left-hand side shows the

instantaneous period of each cycle of the loop, while the graph on the right shows the

period over time. As expected, the period is about 27 milliseconds, plus an overhead

of about 6 milliseconds to account for the communication latency between the JOP

and the test machine. The red line in the graph marks the declared deadline, and the

measured period is safely underneath it.

In contrast, Figure 8.2 takes the same measurements on the same processor, this time

running the CRC algorithm. The period is about 275 milliseconds plus another 6 mil-

liseconds or so due to the communication latency. As predicted, the period exceeds the

50-millisecond deadline, making CRC unusable for this particular application. Again,

these measurements are actually unnecessary during a usual development cycle; they

merely serve as evidence that Clepsydra correctly predicts worst-case execution time.

221

Figure 8.1: This screenshot shows a test program measuring the period between
successive invocations of a checksum algorithm running on a physical Java micropro-
cessor.

8.2 Sensor Polling

An extremely common task in the development of a real-time system—and one that

is also extremely troublesome and difficult—is to determine how fast the system can

interact with its environment. Sensors must be polled, and actuators must be trig-

gered, and the rate at which these actions take place determines whether the system

meets its design criteria. For example, a burglar alarm system might be required to

monitor a power circuit and switch to a backup battery within 50 milliseconds if the

primary voltage drops below a certain threshold. Performing a WCET analysis is the

only way to guarantee that the implementation will meet this design requirement.

Even when deadlines are not crucial, finding the WCET may still be necessary when

creating a system that interacts with sensors. The developer may need to know the

maximum operating frequency of the system, which requires knowing the highest

rate at which a sensor can be polled. Finding the answer would traditionally require

222

Figure 8.2: This screenshot shows a test program measuring the period between
successive invocations of a CRC algorithm running on a physical Java microprocessor.

error-prone and time-consuming system tests and measurements, but an interactive

WCET tool such as Clepsydra can help make a guaranteed determination as soon as

the code has been written. It can also reevaluate the decision almost instantly, on

each change of the code.

As an example, consider the case of a rotary encoder. This type of sensor converts

the angular position of a shaft into a digital code. It is an invaluable device for

robotics, industrial machines, and any application that needs to know the rotational

displacement of an axle. One specific case is a single-axis gimbal that allows an object

to rotate up and down along a horizontal axis. A mobile robot may have a LIDAR

sensor or similar range finder placed on this gimbal, and as the sensor moves up

and down, it takes continuous samples, many times each second, building up a 3D

representation of the environment that the robot can then use for obstacle detection

and avoidance.

A key property in such a system is the frequency at which the encoder can be polled.

223

If it is polled too slowly, the data streaming from the range finder will not match

the observed angle of its axis. The maximum operating frequency must somehow be

determined in order to guarantee that the sensor will be polled at a sufficient rate.

Otherwise, the robot’s 3D model of the world will become corrupted.

Figure 8.3 shows an example of how Clepsydra can provide an immediate answer in

this type of situation. The source code in the screenshot shows how an encoder value

might be processed by adding it to a first-in-first-out buffer. If the buffer is full, the

oldest element is removed to make space for a new one. (In practice, a circular buffer

would probably be used instead for greater efficiency, but this näıve implementation

keeps the example simple.)

The screenshot shows two separate implementations of this procedure, one using

an array-based list and another using a linked list. (Both lists are imported from

the Canteen library to provide predictability and analyzability.) At first, one might

expect the array-based implementation to outperform the linked list. Adding an

element to a pre-allocated array only requires copying the element and incrementing

a size variable, while adding to a linked list requires several pointer copy operations.

The WCET annotations inserted by Clepsydra show that this is indeed the case:

Adding the encoder position to an array list (line 33) takes 3.06 microseconds in the

worst case, but adding it to a linked list (line 44) takes 3.68 microseconds.

Observe, however, that the WCET of each method as a whole (lines 26 and 37) gives

the opposite result. At 67.5 milliseconds, the array-based implementation takes more

than twice as long to execute in the worst case. The reversal is due to the remove

invocations on lines 31 and 42. Removing an element from the beginning of an array

requires shifting each of the remaining elements down by one position, whereas a

linked list only needs to adjust a few pointers. The analysis tool has thus shown

that the maximum operating frequency of the system cannot be obtained with the

224

Figure 8.3: This screenshot shows Clepsydra interactively analyzing two implemen-
tations of a buffer handling method. The WCET of each implementation, indicated
by the red text annotating each line, reveals which version offers better performance.

array-based method, and the linked list version should be used instead.

As a simple verification of these results, the same measurement program introduced

in Section 8.1 can be applied once again. Figure 8.4 shows the program measuring

the time a Java processor requires to poll a rotary encoder for its position and store

the value into a linked list buffer. The average period is about 40 milliseconds:

225

Figure 8.4: A test program measures the period at which a rotary encoder, shown
here connected to a gimbal on the left-hand side, can be polled using linked list buffer
handling.

25 milliseconds for the buffer processing and another 15 to account for reading the

encoder and transmitting the value over a communication link. The total time is

within an arbitrary 50-millisecond deadline as denoted by the red line in the graph.

Figure 8.5 shows precisely the same configuration but with an array-based buffer

instead of a linked list. Here, the average period is about 82 milliseconds: 67 millisec-

onds for the buffer processing and, as before, another 15 to account for communication

latency. This time the period exceeds the 50-millisecond deadline, as predicted by

Clepsydra.

As in Section 8.1, a key point to remember is that the knowledge of which imple-

mentation exceeds the deadline can be obtained without performing any live tests.

The WCET analyzer can make this determination statically. More importantly, the

analyzer employed in this example—Clepsydra—is interactive, so it can adjust con-

tinuously for changes in the code. It can pinpoint exactly when an addition, no

matter how small, causes the deadline to be exceeded, thereby helping the developer

226

Figure 8.5: A test program measures the period at which a rotary encoder, shown
here connected to a gimbal on the left-hand side, can be polled using array-based
buffer handling.

fine-tune the code for optimal WCET.

227

Chapter 9

Conclusions and Future Work

When private spaceflight company SpaceX launched its Falcon 1 rocket in August 2008,

the brand-new engine design produced residual thrust for 1.5 seconds longer than ex-

pected. The delay resulted in a collision between the first and second stages of the

rocket, causing it to plummet into the Pacific Ocean.

Timing failures like the one that downed the Falcon 1 will likely become more frequent

as hard real-time and safety-critical systems continue to move beyond the realm of

aerospace. Validation of worst-case execution time is therefore a necessity. Without

such analysis, the behavior of the system cannot be guaranteed. It could fail catas-

trophically or, in the case of safety-critical hard real-time systems, could cause injury

or even death. While WCET analysis does not prevent failure, it does ensure that

the system’s deadlines will be met.

Despite this fact, convincing practitioners in the field of the importance of WCET

analysis has been enormously difficult. One explanation is that the analysis techniques

currently available are too slow, and tool implementations are usually based on C,

leading to an overabundance of complexity compared to tools based on more modern,

228

higher-level languages. As Aristophenes would say: “High thoughts must have a high

language.”1

Chapter 3 argued that WCET analysis based on bytecode languages such as Java

would be more attractive to industry. Arbitrary code is extremely difficult to analyze,

but the restrictions of Java make the job more tractable while also offering the end

user higher productivity and stronger safety guarantees. These reasons have already

prompted educators in the real-time systems field to call for an increased use of

Java [261].

At the same time, Java brings a number of new complications to the WCET analysis

problem. The additional layer of the virtual machine, combined with garbage collec-

tion and polymorphism, tends to negate the inherent advantages of Java. However,

the advent of Java-specific processors offers a solution by eliminating many sources of

unpredictability in both the hardware and software layers. Switching to a fundamen-

tally different architecture may seem drastic, but the idea is not unorthodox. Many

researchers have argued in favor of custom hardware for real-time computing, such as

general-purpose CPUs with WCET-friendly designs [47, 209, 262].

Some interesting possibilities arose from these assumptions. The first observation

is that Java microprocessors make low-level WCET analysis of basic blocks almost

trivial, meaning that the largest source of pessimism comes from the longest-path

search. However, the dominant search technique, IPET, becomes quite slow as pro-

gram complexity grows. Chapter 6 demonstrated that the much faster tree-based

technique can, with some additional design and implementation effort, attain the

same accuracy as IPET even in the presence of method invocations.

This combination of Java, Java microprocessors, and better tree-based analysis en-

1This is not a direct quote but a popular paraphrasing of a line from The Frogs by Aristophenes.

229

ables a new paradigm known as interactive analysis. It allows tight integration of

WCET knowledge throughout the development cycle, providing near-immediate feed-

back of timing information as the code is written. This approach can help eliminate

timing bugs and other bad surprises before they have a chance to infect later phases

of the development cycle. Tools supporting this kind of interactivity should therefore

be made an integral part of real-time system programming.

As a first step toward this goal, one of the key contributions of this dissertation

is Volta, a suite of tools and libraries to enable interactive WCET analysis. It is

freely available, open source, and makes the claims verifiable. It supports the ideas

of interactive analysis with a true implementation, not just a theory.

Of course, the Volta tools are still in a prototype stage and are by no means complete.

They have many known issues and limitations, including a lack of support for recur-

sion, polymorphism, and exception handling. The project is ripe for future work,

especially in the area of real-time garbage collection. Volta is ignorant of dynamic

memory, but ongoing research on the problem is showing promise [75, 79, 263, 259].

Tools such as Cascade, Clepsydra, and Canteen could serve as a basis for future efforts

in this area.

Despite these limitations, the potential benefits are clear. The groundwork has been

laid, and perhaps one day an interactive WCET analysis tool will be part of every

real-time system developer’s toolbox.

230

Bibliography

[1] J. Ubois, “Sun goes Hollywood,” SunWorld, November 1995. Available:
http://sunsite.uakom.sk/sunworldonline/swol-11-1995/swol-11-pixar.html

[2] M. G. Gouda, Y.-W. Han, E. D. Jensen, W. D. Johnson, and R. Y. Kain,
Distributed Data Processing Technology. Honeywell Systems and Research
Center, September 1977, vol. 4, ch. 3.

[3] F. F.-H. Nah, “A study on tolerable waiting time: How long are Web users
willing to wait?” Behaviour and Information Technology, vol. 23, no. 3, pp.
153–163, May 2004.

[4] P. C. Dibble, Real-Time Java Platform Programming. Prentice Hall, March
2002.

[5] R. Steinmetz and K. Nahrstedt, Multimedia: Computing, Communications and
Applications. Prentice Hall, 1995.

[6] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded
Applications. Norwell, MA, USA: Kluwer Academic Publishers, 1997.

[7] IEEE 1588: Precision clock synchronization protocol for networked measure-
ment and control systems. IEEE, September 2004.

[8] C. Jones and M. J. Matarić, “Automatic synthesis of communication-based co-
ordinated multi-robot systems,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2004), vol. 1, September
2004, pp. 381–387.

[9] J. Kaiser and M. A. Livani, “Invocation of real-time objects in a CAN bus-
system,” in Proceedings of the 1st IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 1998), April 1998, pp. 298–
307.

[10] H. Kopetz and G. Grünsteidl, “TTP – a protocol for fault-tolerant real-time
systems,” Computer, vol. 27, no. 1, pp. 14–23, January 1994.

[11] H. Kopetz, “A comparison of TTP/C and FlexRay,” Institut für Technische
Informatik, Technische Universität Wien, Austria, Tech. Rep., May 2001.

231

http://sunsite.uakom.sk/sunworldonline/swol-11-1995/swol-11-pixar.html

[12] Common Object Request Broker Architecture: Core Specification, 3rd ed. Ob-
ject Management Group, March 2004.

[13] Real-Time CORBA Specification, 2nd ed. Object Management Group, January
2005.

[14] D. C. Schmidt and F. Kuhns, “An overview of the Real-Time CORBA specifi-
cation,” Computer, vol. 33, no. 6, pp. 56–63, June 2000.

[15] G. Pardo-Castellote, “OMG data-distribution service: Architectural overview,”
in Proceedings of the 23rd International Conference on Distributed Computing
Systems Workshops (ICDCS 2003), May 2003.

[16] E. S. Raymond, The Art of UNIX Programming. Addison-Wesley Professional,
October 2003.

[17] T. F. Lawrence, “Quality of service (QoS): a model for information,” in Pro-
ceedings of the 4th International Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS 1999), January 1999, pp. 180–183.

[18] T. V. Vleck, “Software engineering proverbs.” Available: http://www.
multicians.org/thvv/proverbs.html

[19] B. Rieder, I. Wenzel, K. Steinhammer, and P. Puschner, “Using a runtime
measurement device with measurement-based WCET analysis,” in Proceedings
of the 2007 International Embedded Systems Symposium (IESS 2007), June
2007, pp. 15–26.

[20] J. Hu, S. Gorappa, J. A. Colmenares, and R. Klefstad, “Compadres: A
lightweight real-time Java component middleware framework for composing dis-
tributed, real-time, embedded systems,” in Middleware 2007, ser. Lecture Notes
in Computer Science, vol. 4834. Springer Berlin, November 2007, pp. 41–59.

[21] S. Bourne, “A conversation with Bruce Lindsay,” Queue, vol. 2, no. 8, pp. 22–33,
November 2004.

[22] J. Gray, “Why do computers stop and what can be done about it?” Tandem
Computers, Tech. Rep. 85.7, June 1985.

[23] M. Grottke and K. S. Trivedi, “Software faults, software aging and software reju-
venation,” Journal of the Reliability Engineering Association of Japan, vol. 27,
no. 7, pp. 425–438, 2005.

[24] E. Kligerman and A. D. Stoyenko, “Real-time Euclid: a language for reliable
real-time systems,” IEEE Transactions on Software Engineering, vol. 12, no. 9,
pp. 941–949, September 1986.

[25] A. Mohammadi and S. G. Akl, “Scheduling algorithms for real-time systems,”
Queen’s University, Kingston, Ontario, Canada, Tech. Rep. 2005-499, July 2005.

232

http://www.multicians.org/thvv/proverbs.html
http://www.multicians.org/thvv/proverbs.html

[26] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” Journal of the ACM, vol. 20, no. 1, pp. 46–61,
1973.

[27] “Predictable performance for dynamic load and overload: A technology break-
through,” TimeSys Corporation, Tech. Rep., 2004.

[28] K. K. Kim, “Object structures for real-time systems and simulators,” Computer,
vol. 30, no. 8, pp. 62–70, August 1997.

[29] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turn-
bull, The Real-Time Specification for Java, G. Bollella, Ed. Addison Wesley
Longman, January 2000.

[30] H. Ramaprasad and F. Mueller, “Bounding worst-case data cache behavior by
analytically deriving cache reference patterns,” in Proceedings of the 11th IEEE
Real Time on Embedded Technology and Applications Symposium (RTAS 2005).
Washington, DC, USA: IEEE Computer Society, March 2005, pp. 148–157.

[31] H. Ramaprasad and F. Mueller, “Bounding preemption delay within data cache
reference patterns for real-time tasks,” in Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS 2006).
Los Alamitos, CA, USA: IEEE Computer Society, April 2006, pp. 71–80.

[32] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theil-
ing, S. Thesing, and R. Wilhelm, “Reliable and precise WCET determination
for a real-life processor,” in Proceedings of the First International Workshop on
Embedded Software (EMSOFT 2001), ser. Lecture Notes in Computer Science,
vol. 2211. London, UK: Springer-Verlag, October 2001, pp. 469–485.

[33] Y.-T. S. Li, S. Malik, and A. Wolfe, “Performance estimation of embedded
software with instruction cache modeling,” ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 4, no. 3, pp. 257–279, July 1999.

[34] C. Ferdinand, R. Heckmann, and H. Theiling, “Convenient user annotations for
a WCET tool,” in Proceedings of the Third International Workshop on Worst-
Case Execution Time Analysis (WCET 2003), July 2003, pp. 17–20.

[35] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper, “Applying static WCET
analysis to automotive communication software,” in Proceedings of the Seven-
teenth Euromicro Conference on Real-Time Systems (ECRTS 2005). Wash-
ington, DC, USA: IEEE Computer Society, July 2005, pp. 249–258.

[36] L. Tan, “The worst case execution time tool challenge 2006: The external test,”
in Proceedings of the Second International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISOLA 2006), November
2006, pp. 241–248.

233

[37] S. McConnell, Code Complete: A Practical Handbook of Software Construction,
2nd ed. Microsoft Press, June 2004.

[38] “DO-178B, software considerations in airborne systems and equipment certifi-
cation,” RTCA, Inc., December 1992.

[39] K. Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, October 1999.

[40] M. Bordin and T. Vardanega, “Correctness by construction for high-integrity
real-time systems: A metamodel-driven approach,” in Proceedings of the
Twelfth Ada-Europe International Conference on Reliable Software Technolo-
gies, ser. Lecture Notes in Computer Science, vol. 4498. Springer Berlin, June
2007.

[41] P. Amey, “Correctness by construction: Better can also be cheaper,” CrossTalk:
The Journal of Defense Software Engineering, vol. 15, no. 3, pp. 24–28, March
2002.

[42] J. Gustafsson and A. Ermedahl, “Experiences from applying WCET analysis in
industrial settings,” in Proceedings of the Tenth IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC
2007). Washington, DC, USA: IEEE Computer Society, May 2007, pp. 382–
392.

[43] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 112–126, January 2003.

[44] E. A. Lee and Y. Zhao, “Reinventing computing for real time,” in Proceedings
of the Monterey Workshop 2006, ser. Lecture Notes in Computer Science, vol.
4322. Springer Berlin / Heidelberg, September 2006, pp. 1–25.

[45] P. P. Puschner and A. V. Schedl, “Computing maximum task execution times
— a graph-based approach,” Real-Time Systems, vol. 13, no. 1, pp. 67–91, 1997.

[46] R. Kirner and P. Puschner, “Discussion of misconceptions about WCET anal-
ysis,” in Proceedings of the Third International Workshop on Worst-Case Exe-
cution Time Analysis (WCET 2003), July 2003, pp. 61–64.

[47] P. Puschner, “Is worst-case execution-time analysis a non-problem? — Towards
new software and hardware architectures,” in Proceedings of the Second Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET 2002),
June 2002, pp. 57–60.

[48] P. Puschner, “Experiments with WCET-oriented programming and the single-
path architecture,” in Proceedings of the Tenth IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS 2005). Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 205–210.

234

[49] S. Petersson, A. Ermedahl, A. Pettersson, D. Sundmark, and N. Holsti, “Using
a WCET analysis tool in real-time systems education,” in Proceedings of the
Fifth International Workshop on Worst-Case Execution Time Analysis (WCET
2005), R. Wilhelm, Ed., Dagstuhl, Germany, 2005.

[50] G. Cato, “Commentary: Java is ready for real time,” EE Times, December
2006.

[51] D. Geer, “The Unmanned Little Bird project,” SERVO Magazine, pp. 10–12,
February 2007.

[52] J. W. Grenning, “Why are you still using C?” Embedded.com, April 2003.

[53] D. M. Ritchie, “The development of the C language,” SIGPLAN Notices,
vol. 28, no. 3, pp. 201–208, March 1993.

[54] D. Engler, “Weird things that surprise academics trying to commercialize
a static checking tool,” 2005. Available: http://www.stanford.edu/∼engler/
spin05-coverity.pdf

[55] B. Meyer, “Approaches to portability,” Journal of Object-Oriented Program-
ming, vol. 11, no. 6, pp. 93–95, 1998.

[56] D. C. Schmidt, D. L. Levine, and S. Mungee, “The design of the TAO real-time
object request broker,” Computer Communications, vol. 21, no. 4, pp. 294–324,
April 1998.

[57] B. Stroustrup, “Bjarne Stroustrup’s FAQ.” Available: http://www.research.
att.com/∼bs/bs faq.html

[58] E. G. Benowitz and A. F. Niessner, “Experiences in adopting real-time Java for
flight-like software,” in On The Move to Meaningful Internet Systems 2003:
OTM 2003 Workshops, ser. Lecture Notes in Computer Science, vol. 2889.
Springer Berlin, October 2003, pp. 490–496.

[59] C. A. R. Hoare, “The emperor’s old clothes,” Communications of the ACM,
vol. 24, no. 2, pp. 75–83, February 1981.

[60] D. Lammers, “REAL-TIME JAVA: Reliability quest fuels RT Java projects,”
EE Times, March 2005. Available: http://www.eetimes.com/showArticle.
jhtml?articleID=159905424

[61] M. R. Elliott, “The real-time specification for Java,” Presentation slides, June
2007. Available: http://www.uuasc.org/rtsj.pdf

[62] Y. Chen, R. Dios, A. Mili, L. Wu, and K. Wang, “An empirical study of pro-
gramming language trends,” IEEE Software, vol. 22, no. 3, pp. 72–79, May/June
2005.

235

http://www.uuasc.org/rtsj.pdf
http://www.stanford.edu/~engler/spin05-coverity.pdf
http://www.stanford.edu/~engler/spin05-coverity.pdf
http://www.research.att.com/~bs/bs_faq.html
http://www.research.att.com/~bs/bs_faq.html
http://www.eetimes.com/showArticle.jhtml?articleID=159905424
http://www.eetimes.com/showArticle.jhtml?articleID=159905424

[63] A. T. Murray and M. Shahabuddin, “OO techniques applied to a real-time,
embedded, spaceborne application,” in Companion to the Twenty-First ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications. New York, NY, USA: ACM, October 2006, pp. 830–838.

[64] G. Bernat, A. Burns, and A. Wellings, “Portable worst-case execution time
analysis using Java byte code,” in Proceedings of the 12th Euromicro Conference
on Real-Time Systems (Euromicro-RTS 2000). Los Alamitos, CA, USA: IEEE
Computer Society, June 2000, pp. 81–88.

[65] B. Boyes, “Why use Java?” Systronix White Paper. Available: http:
//www.practicalembeddedjava.com/language/WhyUseJava.pdf

[66] E. Y.-S. Hu, G. Bernat, and A. Wellings, “Addressing dynamic dispatching
issues in WCET analysis for object-oriented hard real-time systems,” in Pro-
ceedings of the Fifth IEEE International Symposium on Object-oriented Real-
time distributed Computing (ISORC 2002). Los Alamitos, CA, USA: IEEE
Computer Society, April 2002, pp. 109–116.

[67] M. A. Wehrmeister, C. E. Pereira, and L. B. Becker, “Optimizing the genera-
tion of object-oriented real-time embedded applications based on the real-time
specification for Java,” in Proceedings of the Seventh Conference on Design, Au-
tomation and Test in Europe (DATE 2006). 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2006, pp. 806–811.

[68] M. Paleczny, C. Vick, and C. Click, “The Java HotSpot server compiler,” in
Proceedings of the Java Virtual Machine Research and Technology Symposium
(JVM 2001). Berkeley, CA, USA: USENIX Association, April 2001.

[69] J. Child, “Real-time Java takes aim at embedded control,” RTC, August 2004.

[70] K. D. Nilsen, “Issues in the design and implementation of real-time Java,” Java
Developer’s Journal, vol. 1, no. 1, November 1996.

[71] K. Nilsen, “Adding real-time capabilities to Java,” Communications of the
ACM, vol. 41, no. 6, pp. 49–56, June 1998.

[72] G. Bollella and J. Gosling, “The real-time specification for Java,” Computer,
vol. 33, no. 6, pp. 47–54, June 2000.

[73] D. S. Hardin, “Real-time objects on the bare metal: An efficient hardware
realization of the Java virtual machine,” Proceedings of the Fourth IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2001), pp. 53–59, May 2001.

[74] D. C. Sharp, E. Pla, and K. R. Luecke, “Evaluating mission critical large-scale
embedded system performance in real-time Java,” in Proceedings of the 24th
IEEE International Real-Time Systems Symposium (RTSS 2003). Washington,
DC, USA: IEEE Computer Society, December 2003, pp. 362–365.

236

http://www.practicalembeddedjava.com/language/WhyUseJava.pdf
http://www.practicalembeddedjava.com/language/WhyUseJava.pdf

[75] F. Siebert, “Hard real-time garbage-collection in the Jamaica virtual machine,”
in Proceedings of the Sixth International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA 1999). Washington, DC, USA: IEEE
Computer Society, December 1999, pp. 96–102.

[76] J. McEnery, D. Hickey, and M. Boubekeur, “Empirical evaluation of two main-
stream RTSJ implementations,” in Proceedings of the Fifth International Work-
shop on Java Technologies for Real-time and Embedded Systems (JTRES 2007).
New York, NY, USA: ACM, September 2007, pp. 47–54.

[77] A. Corsaro and D. C. Schmidt, “The design and performance of the jRate real-
time Java implementation,” in Proceedings of the Fourth International Sympo-
sium on Distributed Objects and Applications (DOA 2002), ser. Lecture Notes
in Computer Science, vol. 2519. London, UK: Springer-Verlag, October 2002,
pp. 900–921.

[78] J. Baker, A. Cunei, C. Flack, F. Pizlo, M. Prochazka, J. Vitek, A. Armbruster,
E. Pla, and D. Holmes, “A real-time Java virtual machine for avionics: An
experience report,” in Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2002). Los Alamitos, CA,
USA: IEEE Computer Society, April 2006, pp. 384–396.

[79] D. F. Bacon, P. Cheng, and V. T. Rajan, “The Metronome: A simpler approach
to garbage collection in real-time systems,” in On The Move to Meaningful In-
ternet Systems: OTM 2003 Workshops, ser. Lecture Notes in Computer Science,
R. Meersman and Z. Tari, Eds., vol. 2889. Springer Berlin, November 2003,
pp. 466–478.

[80] S. G. Robertz, R. Henriksson, K. Nilsson, A. Blomdell, and I. Tarasov, “Using
real-time Java for industrial robot control,” in Proceedings of the Fifth Inter-
national Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES 2007). New York, NY, USA: ACM, 2007, pp. 104–110.

[81] J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Dawson, M. Fulton,
D. Grove, D. Hart, and M. Stoodley, “Design and implementation of a com-
prehensive real-time Java virtual machine,” in Proceedings of the Seventh ACM
and IEEE International Conference on Embedded Software (EMSOFT 2007).
New York, NY, USA: ACM, September 2007, pp. 249–258.

[82] “L-3 telemetry selects Aonix PERC VM for upgrade of Java real-
time data acquisition system,” Press release, April 2006. Available:
http://www.aonix.com/pr 04.04.06a.html

[83] J. Auerbach, D. F. Bacon, D. T. Iercan, C. M. Kirsch, V. T. Rajan, H. Roeck,
and R. Trummer, “Java takes flight: Time-portable real-time programming
with exotasks,” in Proceedings of the ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES 2007), vol. 42,
no. 7. New York, NY, USA: ACM, 2007, pp. 51–62.

237

http://www.aonix.com/pr_04.04.06a.html

[84] J. Martin, “Sun’s James Gosling shows what Java can do,” CNET News, May
2007. Available: http://www.news.com/2300-1012 3-6183339.html

[85] T. Carmel-Veilleux and M. Morissette, “SONIA 2007: Exploring the depths
with ease,” École de technologie supérieure, Tech. Rep., 2007.

[86] “National Oilwell Varco selects Aonix PERC for Java-based robotic drilling,”
Press release, September 2006. Available: http://www.aonix.com/pr 09.25.
06c.html

[87] “Linux and real-time Java power German traffic lights,” August 2007.
Available: http://www.linuxdevices.com/news/NS2015665496.html

[88] A. Corsaro and D. C. Schmidt, “Evaluating real-time Java features and perfor-
mance for real-time embedded systems,” in Proceedings of the Eighth IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS
2002). Washington, DC, USA: IEEE Computer Society, 2002, pp. 90–100.

[89] P. Mikhalenko, “Real-time Java: An introduction,” ONJava.com,
May 2006. Available: http://www.onjava.com/pub/a/onjava/2006/05/10/
real-time-java-introduction.html

[90] G. Bollella, B. Delsart, R. Guider, C. Lizzi, and F. Parain, “Mackinac: Mak-
ing HotSpot real-time,” in Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, May 2005, pp. 45–54.

[91] N. Zhang, A. Burns, and M. Nicholson, “Pipelined processors and worst case
execution times,” Real-Time Systems, vol. 5, no. 4, pp. 319–343, October 1993.

[92] N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler: Automatic gen-
eration of path tests by combining static and dynamic analysis,” in Proceedings
of the Fifth European Dependable Computing Conference (EDCC 2005), ser.
Lecture Notes in Computer Science, vol. 3463, April 2005, pp. 281–292.

[93] C. Im, “A hybrid approach for derivation of tight execution time bounds of
program-segments and service time bounds of simple object methods in real-
time distributed computing systems,” Ph.D. dissertation, University of Califor-
nia, Irvine, 2005.

[94] A. Zerzelidis and A. J. Wellings, “Requirements for a real-time .NET frame-
work,” SIGPLAN Notices, vol. 40, no. 2, pp. 41–50, February 2005.

[95] M. Schoeberl, “A time predictable instruction cache for a Java processor,” in On
the Move to Meaningful Internet Systems 2004, ser. Lecture Notes in Computer
Science, R. Meersman and Z. Tari, Eds., vol. 3292, January 2004, pp. 371–382.

[96] M. Schoeberl, “A time predictable Java processor,” in Design, Automation, and
Test in Europe (DATE 2006). 3001 Leuven, Belgium: European Design and
Automation Association, March 2006, pp. 800–805.

238

http://www.onjava.com/pub/a/onjava/2006/05/10/real-time-java-introduction.html
http://www.news.com/2300-1012_3-6183339.html
http://www.aonix.com/pr_09.25.06c.html
http://www.aonix.com/pr_09.25.06c.html
http://www.linuxdevices.com/news/NS2015665496.html
http://www.onjava.com/pub/a/onjava/2006/05/10/real-time-java-introduction.html

[97] M. Schoeberl, “A Java processor architecture for embedded real-time systems,”
Journal of Systems Architecture, June 2007.

[98] R. Kirner, “The programming language wcetC,” Technische Universität Wien,
Institut für Technische Informatik, Research Report 2/2002, May 2002.

[99] R. Wilhelm, J. Engblom, S. Thesing, and D. Whalley, “Industrial requirements
for WCET tools: Answers to the ARTIST questionnaire,” in Proceedings of
the Third International Workshop on Worst-Case Execution Time Analysis
(WCET 2003), July 2003, pp. 39–43.

[100] J. M. O’Connor and M. Tremblay, “picoJava-I: the Java virtual machine in
hardware,” IEEE Micro, vol. 17, no. 2, pp. 45–53, March/April 1997.

[101] G. Lawton, “Moving Java into mobile phones,” Computer, vol. 35, no. 6, pp.
17–20, June 2002.

[102] C. Porthouse, “PRODUCT HOW-TO: Use ARM DBX hardware extensions
to accelerate Java in space-constrained embedded apps,” Embedded.com,
October 2007. Available: http://www.embedded.com/products/softwaretools/
202402546

[103] R. B. Smith, “SPOTWorld and the Sun SPOT,” in Proceedings of the Sixth
International Conference on Information Processing in Sensor Networks (IPSN
2007). New York, NY, USA: ACM, April 2007, pp. 565–566.

[104] D. Loomis, The TINI Specification and Developer’s Guide. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001.

[105] “Velocity Semiconductor debuts first in series of mixed-language microcon-
trollers,” Press release, May 2003. Available: http://www.velocitysemi.com/
pr001.htm

[106] Z. Liang, J. Plosila, and K. Sere, “Asynchronous Java accelerator for embedded
Java virtual machine,” in Proceedings of the IEEE Sixth Circuits and Systems
Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Com-
munication, May 2004, pp. 253–256.

[107] C. Holland, “Moon2 improves Java applications,” Embedded.com, April 2002.
Available: http://www.embedded.com/23901577

[108] J. Kreuzinger, R. Marston, T. Ungerer, U. Brinkschulte, and C. Krakowski,
“The Komodo Project: Thread-based event handling supported by a multi-
threaded Java microcontroller,” vol. 2. Los Alamitos, CA, USA: IEEE Com-
puter Society, September 1999, p. 2122.

[109] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and T. Ungerer, “Real-
time event-handling and scheduling on a multithreaded Java microcontroller,”
Microprocessors and Microsystems, vol. 27, no. 1, pp. 19–31, February 2003.

239

http://www.embedded.com/23901577
http://www.embedded.com/products/softwaretools/202402546
http://www.embedded.com/products/softwaretools/202402546
http://www.velocitysemi.com/pr001.htm
http://www.velocitysemi.com/pr001.htm

[110] U. Brinkschulte and M. Pacher, “Improving the real-time behaviour of a multi-
threaded Java microcontroller by control theory and model based latency pre-
diction,” in Tenth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems. Los Alamitos, CA, USA: IEEE Computer Society, Febru-
ary 2005, pp. 82–96.

[111] S. A. Ito, L. Carro, and R. P. Jacobi, “Making Java work for microcontroller
applications,” IEEE Design and Test of Computers, vol. 18, no. 5, pp. 100–110,
September-October 2001.

[112] A. C. S. Beck and L. Carro, “A VLIW low power Java processor for embedded
applications,” in Proceedings of the Seventeenth Symposium on Integrated Cir-
cuits and System Design (SBCCI 2004). New York, NY, USA: ACM, 2004,
pp. 157–162.

[113] D. J. Newman, “Embedded Java controllers,” Circuit Cellar, no. 166, pp. 16–21,
May 2004.

[114] T. R. Halfhill, “Imsys hedges bets on Java,” Microprocessor Report, August
2000.

[115] IM1101C Technical Reference Manual, 0th ed., Imsys Technologies,
October 2004. Available: http://www.imsys.se/documentation/manuals/
tr-CjipTechref.pdf

[116] B. Bose, M. E. Tuna, and J. M. Nagy, “LavaCORE: configurable Java processor
core,” in Proceedings of the IEEE Aerospace Conference, vol. 4, March 2002.

[117] M. Zabel, T. B. Preuber, P. Reichel, and R. G. Spallek, “Secure, real-time and
multi-threaded general-purpose embedded Java microarchitecture,” in Proceed-
ings of the Tenth Euromicro Conference on Digital System Design Architectures,
Methods and Tools (DSD 2007). Washington, DC, USA: IEEE Computer So-
ciety, August 2007, pp. 59–62.

[118] T. Yiyu, L. W. Yiu, Y. C. Hang, R. Li, and A. S. Fong, “A Java processor with
hardware-support object-oriented instructions,” Microprocessors and Microsys-
tems, vol. 30, no. 8, p. 469, December 2006.

[119] F. Gruian and M. Westmijze, “BlueJEP: a flexible and high-performance Java
embedded processor,” in Proceedings of the Fifth International Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES 2007). New
York, NY, USA: ACM, September 2007, pp. 222–229.

[120] M. Schoeberl, “JOP: A Java optimized processor for embedded real-time sys-
tems,” Ph.D. dissertation, Vienna University of Technology, Vienna, Austria,
January 2005.

240

http://www.imsys.se/documentation/manuals/tr-CjipTechref.pdf
http://www.imsys.se/documentation/manuals/tr-CjipTechref.pdf

[121] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The influence of
processor architecture on the design and the results of WCET tools,” Proceed-
ings of the IEEE, vol. 91, no. 7, pp. 1038–1054, July 2003.

[122] K. Hansen, “Bluetooth API for JOP: Implementation of the Java specification
request 82,” Master’s thesis, Copenhagen Business School, February 2007.

[123] A. J. Perlis, “Epigrams on programming,” SIGPLAN Notices, vol. 17, no. 9,
pp. 7–13, September 1982.

[124] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in Proceed-
ings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE 2001). New York, NY, USA: ACM,
June 2001, pp. 54–61.

[125] T. P. Jensen, D. L. Metayer, and T. Thorn, “Verification of control flow based
security properties,” in Proceedings of the 1999 IEEE Symposium on Security
and Privacy, May 1999, pp. 89–103.

[126] R. Pawlak, “Spoon: Annotation-driven program transformation — the AOP
case,” in Proceedings of the First Workshop on Aspect-Oriented Middleware
Development (AOMD 2005). New York, NY, USA: ACM Press, 2005.

[127] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot
- a Java bytecode optimization framework,” in Proceedings of the 1999 Confer-
ence of the Centre for Advanced Studies on Collaborative Research (CASCON
1999). IBM Press, November 1999, p. 13.

[128] J. E. Shaw, “Visualization tools for optimizing compilers,” Master’s thesis,
McGill University, August 2005.

[129] M. C. Rinard et al., “Flex compiler infrastructure.” Available: http:
//flex-compiler.csail.mit.edu/

[130] H. Agrawal, “Dominators, super blocks, and program coverage,” in Proceed-
ings of the Twenty-first ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 1994). New York, NY, USA: ACM, January
1994, pp. 25–34.

[131] M. Eichberg, “BAT2XML: XML-based Java bytecode representation,” in Pro-
ceedings of the First Workshop on Bytecode Semantics, Verification, Analysis
and Transformation (Bytecode 2005), ser. Electronic Notes in Theoretical Com-
puter Science, vol. 141, no. 1. Elsevier B.V., December 2005, pp. 93–107.

[132] E. M. Gagnon and L. J. Hendren, “SableCC, an object-oriented compiler frame-
work,” in Proceedings of the Technology of Object-Oriented Languages and Sys-
tems (TOOLS 1998). Washington, DC, USA: IEEE Computer Society, August
1998, p. 140.

241

http://flex-compiler.csail.mit.edu/
http://flex-compiler.csail.mit.edu/

[133] M. Cortés, M. Fontoura, and C. Lucena, “Framework evolution tool,” Journal
of Object Technology, vol. 5, no. 8, pp. 101–124, November-December 2006.

[134] B. Bokowski and A. Spiegel, “Barat — a front–end for Java,” Freie Universität
Berlin, Tech. Rep. B-98-09, December 1998.

[135] M. Schoeberl and R. Pedersen, “WCET analysis for a Java processor,” in Pro-
ceedings of the Fourth International Workshop on Java Technologies for Real-
time and Embedded Systems (JTRES 2006), October 2006.

[136] M. Dahm, “Byte code engineering with the BCEL API,” Freie Universität
Berlin, Tech. Rep. B-17-98, April 2001.

[137] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: a code manipulation tool to
implement adaptable systems,” in Adaptable and extensible component systems
(Systèmes à composants adaptables et extensibles), October 2002.

[138] A. A. Evstiougov-Babaev, “Call graph and control flow graph visualization for
developers of embedded applications,” in Software Visualization, ser. Lecture
Notes in Computer Science, vol. 2269. Springer Berlin, 2002, pp. 611–614.

[139] B. L. Titzer, “Avrora: The AVR simulation and analysis framework,” Master’s
thesis, University of California, Los Angeles, 2004.

[140] C. Cifuentes and K. J. Gough, “Decompilation of binary programs,” Software:
Practice and Experience, vol. 25, no. 7, pp. 811–829, July 1995.

[141] M. V. Emmerik and T. Waddington, “Using a decompiler for real-world source
recovery,” in Proceedings of the Eleventh Working Conference on Reverse En-
gineering (WCRE 2004). Washington, DC, USA: IEEE Computer Society,
November 2004, pp. 27–36.

[142] L. Ramshaw, “Eliminating go to’s while preserving program structure,” Journal
of the ACM, vol. 35, no. 4, pp. 893–920, October 1988.

[143] C. Cifuentes, “Reverse compilation techniques,” Ph.D. dissertation, Queensland
University of Technology, July 1994.

[144] H. van Vliet, “Mocha, the Java decompiler.” Available: http://www.brouhaha.
com/∼eric/software/mocha/

[145] M. Batchelder and L. Hendren, “Obfuscating Java: The most pain for the least
gain,” in Proceedings of the Sixteenth International Conference on Compiler
Construction (CC 2007), ser. Lecture Notes in Computer Science, vol. 4420.
Springer Berlin, March 2007, pp. 96–110.

[146] T. Hou, H. Chen, and M. Tsai, “Three control flow obfuscation methods for
Java software,” IEE Proceedings Software, vol. 153, no. 2, pp. 80–86, April 2006.

242

http://www.brouhaha.com/~eric/software/mocha/
http://www.brouhaha.com/~eric/software/mocha/

[147] L. Ertaul and S. Venkatesh, “JHide — a tool kit for code obfuscation,” in
Proceedings of the Eighth IASTED International Conference on Software Engi-
neering and Applications (SEA 2004), November 2004, pp. 133–138.

[148] T. A. Proebsting and S. A. Watterson, “Krakatoa: Decompilation in Java (does
bytecode reveal source?),” in Proceedings of the Third USENIX Conference
on Object-Oriented Technologies and Systems (COOTS 1997). Berkeley, CA,
USA: USENIX Association, June 1997, pp. 185–197.

[149] J. Miecznikowski and L. J. Hendren, “Decompiling Java bytecode: Problems,
traps and pitfalls,” in Proceedings of the Eleventh International Conference on
Compiler Construction (CC 2002), ser. Lecture Notes in Computer Science, vol.
2304. London, UK: Springer-Verlag, March 2002, pp. 111–127.

[150] N. A. Naeem and L. Hendren, “Programmer-friendly decompiled Java,” in Pro-
ceedings of the Fourteenth IEEE International Conference on Program Compre-
hension (ICPC 2006). Washington, DC, USA: IEEE Computer Society, June
2006, pp. 327–336.

[151] J. Hoenicke, “Java Optimize and Decompile Environment (JODE).” Available:
http://jode.sourceforge.net/

[152] K. Kumar, “JReversePro.” Available: http://jrevpro.sourceforge.net/

[153] B. Jasik, “dis - a fast Java disassembler.” Available: http://www.cs.princeton.
edu/∼benjasik/dis/index.html

[154] J. Meyer and D. Reynaud, “Jasmin.” Available: http://jasmin.sourceforge.net/

[155] S. Dambalkar, “javap - the Java class file disassembler.” Available:
http://java.sun.com/javase/6/docs/technotes/tools/solaris/javap.html

[156] E. R. Gansner and S. C. North, “An open graph visualization system and
its applications to software engineering,” Software: Practice and Experience,
vol. 30, no. 11, pp. 1203–1233, September 2000.

[157] I. G. Tollis, G. D. Battista, P. Eades, and R. Tamassia, Graph Drawing: Algo-
rithms for the Visualization of Graphs. Prentice Hall, July 1998.

[158] N. Mathis, Storm Warning: The Story of a Killer Tornado. Touchstone, March
2007.

[159] W. E. Wong and J. Li, “An integrated solution for testing and analyzing Java
applications in an industrial setting,” in Proceedings of the Twelfth Asia-Pacific
Software Engineering Conference (APSEC 2005). Washington, DC, USA:
IEEE Computer Society, 2005, pp. 576–583.

[160] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engi-
neering, vol. 2, no. 4, pp. 308–320, December 1976.

243

http://java.sun.com/javase/6/docs/technotes/tools/solaris/javap.html
http://jode.sourceforge.net/
http://jrevpro.sourceforge.net/
http://www.cs.princeton.edu/~benjasik/dis/index.html
http://www.cs.princeton.edu/~benjasik/dis/index.html
http://jasmin.sourceforge.net/

[161] S. Pestov, “jEdit — programmer’s text editor.” Available: http://www.jedit.
org/

[162] E. Gamma and K. Beck, Contributing to Eclipse: Principles, Patterns, and
Plugins. Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 2003.

[163] T. Boudreau, J. Glick, and V. Spurlin, NetBeans: The Definitive Guide. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc., 2002.

[164] J. Gustedt, O. A. Mæhle, and J. A. Telle, “The treewidth of Java programs,” in
The Fourth International Workshop on Algorithm Engineering and Experiments
(ALENEX 2002), ser. Lecture Notes in Computer Science, vol. 2409. London,
UK: Springer-Verlag, 2002, pp. 86–97.

[165] R. C. Martin, Java and C++: A Critical Comparison, ser. Sigs Reference Li-
brary. New York, NY, USA: Cambridge University Press, February 1998,
no. 10, pp. 51–68.

[166] C. W. Probst, “Modular control flow analysis for libraries,” in Proceedings of
the Ninth International Symposium on Static Analysis (SAS 2002), ser. Lec-
ture Notes in Computer Science, vol. 2477. London, UK: Springer-Verlag,
September 2002, pp. 165–179.

[167] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani, “A study
of devirtualization techniques for a Java just-in-time compiler,” in Proceedings
of the Fifteenth ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2000). New York, NY, USA:
ACM, October 2000, pp. 294–310.

[168] N. Walkinshaw, M. Roper, and M. Wood, “The Java system dependence graph,”
in Proceedings of the Third IEEE International Workshop on Source Code Anal-
ysis and Manipulation (SCAM 2003), September 2003, pp. 55–64.

[169] A. M. Turing, “On computable numbers, with an application to the Entschei-
dungsproblem,” in Proceedings of the London Mathematical Society, ser. 2,
vol. 42. London Mathematical Society, November 1936, pp. 230–265.

[170] J. Gustafsson, “Analyzing execution-time of object-oriented programs using
abstract interpretation,” Ph.D. dissertation, Mälardalen University, Väster̊as,
Sweden, May 2000.

[171] J. Gustafsson, “Worst case execution time analysis of object-oriented pro-
grams,” Proceedings of the Seventh International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS 2002), pp. 71–76, 2002.

[172] P. Puschner and A. Burns, “Guest editorial: A review of worst-case execution-
time analysis,” Real-Time Systems, vol. 18, no. 2-3, pp. 115–128, May 2000.

244

http://www.jedit.org/
http://www.jedit.org/

[173] J. Engblom, A. Ermedahl, M. Sjoedin, J. Gustafsson, and H. Hansson, “Worst-
case execution-time analysis for embedded real-time systems,” International
Journal on Software Tools for Technology Transfer, vol. 4, no. 4, pp. 437–455,
August 2003.

[174] C. Stoif, “A survey of the research on analysis of the worst-case execution-time
(WCET),” Master’s thesis, University of Technology, Vienna, August 2006.

[175] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, “The worst-case execution time
problem—Overview of methods and survey of tools,” ACM Transactions on
Embedded Computing Systems, vol. 7, no. 3, pp. 1–53, April 2008.

[176] G. Bernat, A. Burns, and M. Newby, “Probabilistic timing analysis: An ap-
proach using copulas,” Journal of Embedded Computing, vol. 1, no. 2, pp. 179–
194, April 2005.

[177] I. Wenzel, “Measurement-based timing analysis of superscalar processors,”
Ph.D. dissertation, Technische Universität Wien, Vienna, Austria, November
2006.

[178] P. A. Guedes and S. V. Cavalcante, “On the design of an extensible plat-
form for flow analysis of Java using abstract interpretation,” in Proceedings
of the Third International Workshop on Worst-Case Execution Time Analysis
(WCET 2003), July 2003, pp. 47–50.

[179] J. Gustafsson, B. Lisper, R. Kirner, and P. Puschner, “Code analysis for tem-
poral predictability,” Real-Time Systems, vol. 32, no. 3, pp. 253–277, March
2006.

[180] J. Engblom, “Processor pipelines and static worst-case execution time analysis,”
Ph.D. dissertation, Uppsala University, April 2002.

[181] A. C. Shaw, “Reasoning about time in higher-level language software,” IEEE
Transactions on Software Engineering, vol. 15, no. 7, pp. 875–889, July 1989.

[182] M. Schoeberl, “Design and implementation of an efficient stack machine,” in
Proceedings of the Nineteenth IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2005). Washington, DC, USA: IEEE Computer
Society, April 2005.

[183] F. Stappert, A. Ermedahl, and J. Engblom, “Efficient longest executable path
search for programs with complex flows and pipeline effects,” in Proceedings of
the 2001 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES 2001). New York, NY, USA: ACM, November
2001, pp. 132–140.

245

[184] A. Ermedahl, F. Stappert, and J. Engblom, “Clustered worst-case execution-
time calculation,” IEEE Transactions on Computers, vol. 54, no. 9, pp. 1104–
1122, September 2005.

[185] P. Puschner and C. Koza, “Calculating the maximum execution time of real-
time programs,” Real-Time Systems, vol. 1, no. 2, pp. 159–176, September
1989.

[186] A. Colin and I. Puaut, “A modular and retargetable framework for tree-based
WCET analysis,” in Proceedings of the Thirteenth Euromicro Conference on
Real-Time Systems (ECRTS 2001). Washington, DC, USA: IEEE Computer
Society, June 2001, pp. 37–44.

[187] P. Altenbernd, “On the false path problem in hard real-time programs,” in
Proceedings of the Eighth Euromicro Workshop on Real-Time Systems (EUR-
WRTS 2006). Los Alamitos, CA, USA: IEEE Computer Society, June 1996,
pp. 102–107.

[188] A. Colin and G. Bernat, “Scope-tree: A program representation for symbolic
worst-case execution time analysis,” in Proceedings of the Fourteenth Euromicro
Conference on Real-Time Systems (ECRTS 2002). Washington, DC, USA:
IEEE Computer Society, June 2002, pp. 50–59.

[189] F. Stappert and P. Altenbernd, “Complete worst-case execution time analysis of
straight-line hard real-time programs,” Journal of Systems Architecture, vol. 46,
no. 4, pp. 339–355, February 2000.

[190] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software using
implicit path enumeration,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 16, no. 12, pp. 1477–1487, December 1997.

[191] Y.-T. S. Li, S. Malik, and A. Wolfe, “Efficient microarchitecture modeling and
path analysis for real-time software,” in Proceedings of the Sixteenth IEEE Real-
Time Systems Symposium (RTSS 1995). Washington, DC, USA: IEEE Com-
puter Society, 1995, p. 298.

[192] “lp solve.” Available: http://lpsolve.sourceforge.net/

[193] T. Harmon and R. Klefstad, “Interactive back-annotation of worst-case execu-
tion time analysis for Java microprocessors,” in Proceedings of the Thirteenth
IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA 2007), August 2007, pp. 209–216.

[194] R. A. Quinnell, “Static analysis stomps on bugs,” EE Times, March 2008.
Available: http://www.eetimes.com/showArticle.jhtml?articleID=206902140

[195] R. Jetley and P. Anderson, “Using static analysis to evaluate software in medical
devices,” Embedded.com, April 2008.

246

http://www.eetimes.com/showArticle.jhtml?articleID=206902140
http://lpsolve.sourceforge.net/

[196] A. Prantl, “TuBound - a tool for worst-case execution time analysis,” in Pro-
ceedings of the Eighth International Workshop on Worst-Case Execution Time
Analysis (WCET 2008), July 2008.

[197] A. Ermedahl, “A modular tool architecture for worst-case execution time anal-
ysis,” Ph.D. dissertation, Uppsala University, Uppsala, Sweden, June 2003.

[198] H. Cassé and P. Sainrat, “OTAWA, a framework for experimenting WCET
computations,” in Proceedings of the Third Embedded Real-Time Software Con-
ference (ERTS 2006), January 2006.

[199] X. Li, Y. Liang, T. Mitra, and A. Roychoudhur, “Chronos: A timing analyzer
for embedded software,” Science of Computer Programming, vol. 69, pp. 56–67,
December 2007.

[200] N. Holsti and S. Saarinen, “Status of the Bound-T WCET tool,” in Proceedings
of the Second International Workshop on Worst-Case Execution Time Analysis
(WCET 2002), June 2002.

[201] G. Bernat and M. Bennett, “Identifying opportunities for worst-case execution
time reduction in an avionics system,” in Proceedings of the Twelveth Interna-
tional Conference on Reliable Software Technologies (Ada-Europe 2007), June
2007.

[202] W. Zhao, D. Whalley, C. Healy, and F. Mueller, “Improving WCET by applying
a WC code-positioning optimization,” ACM Transactions on Architecture and
Code Optimization, vol. 2, no. 4, pp. 335–365, 2005.

[203] L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and M. Harmon, “Sup-
porting the specification and analysis of timing constraints,” in Proceedings of
the Second IEEE Real-Time Technology and Applications Symposium (RTAS
1996), June 1996, pp. 170–178.

[204] J. R. P. Ribeiro, N. C. da Silva, and C. E. Morón, “A visual environment
for the development of parallel real-time programs,” in Proceedings of the 12th
International Parallel Processing Symposium / Ninth Symposium on Parallel
and Distributed Processing (IPPS/SPDP 1998), ser. Lecture Notes in Computer
Science, vol. 1388. Springer Berlin, March 1998, pp. 994–1014.

[205] R. Kirner, “Consideration of optimizing compilers in the context of WCET
analysis,” in Proceedings of the Deutsche Informatiktage 2000, October 2000,
pp. 123–126.

[206] P. Persson and G. Hedin, “An interactive environment for real-time software
development,” in Proceedings of the Technology of Object-Oriented Languages
and Systems (TOOLS 2000). Washington, DC, USA: IEEE Computer Society,
June 2000, pp. 57–68.

247

[207] J. Fauster, R. Kirner, and P. Puschner, “Intelligent editor for writing worst-
case-execution-time-oriented programs,” in Proceedings of the Third Interna-
tional Conference on Embedded Software (EMSOFT 2003), ser. Lecture Notes
in Computer Science, vol. 2855. Springer-Verlag, 2003, pp. 190–205.

[208] W. Zhao, P. Kulkarni, D. Whalley, C. Healy, F. Mueller, and G.-R. Uh, “Timing
the WCET of embedded applications,” in Proceedings of the Tenth IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS 2004),
May 2004, pp. 472–481.

[209] P. Yu and T. Mitra, “Satisfying real-time constraints with custom instruc-
tions,” in Proceedings of the Third IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS 2005).
New York, NY, USA: ACM, September 2005, pp. 166–171.

[210] W. Zhao, W. Kreahling, D. Whalley, C. Healy, and F. Mueller, “Improving
WCET by optimizing worst-case paths,” in Proceedings of the Eleventh IEEE
Real Time on Embedded Technology and Applications Symposium (RTAS 2005).
Washington, DC, USA: IEEE Computer Society, March 2005, pp. 138–147.

[211] M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving industrial strength tim-
ing predictions of embedded system behavior,” in The 2008 International Con-
ference on Embedded Systems and Applications (ESA 2008), Las Vegas, Nevada,
USA, July 2008.

[212] T. Harmon, R. Kirner, M. Schoeberl, and R. Klefstad, “A modular worst-case
execution time analysis tool for Java processors,” in Proceedings of the Four-
teenth IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2008), April 2008, pp. 47–57.

[213] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[214] B. Cole, “Embedded programmer shortage: A problem, but what kind?
How bad? And how to solve it?” Embedded.com, June 2007. Available:
http://www.embedded.com/news/embeddedindustry/200000893

[215] E. Y.-S. Hu, A. Wellings, and G. Bernat, “XRTJ: An extensible distributed
high-integrity real-time Java environment,” in Proceedings of the Ninth Inter-
national Conference on Real-Time and Embedded Computing Systems and Ap-
plications (RTCSA 2003), ser. Lecture Notes in Computer Science, vol. 2968.
Springer Berlin, February 2003, pp. 208–228.

[216] R. Kirner and P. Puschner, “Classification of code annotations and discussion of
compiler-support for worst-case execution time analysis,” in Proceedings of the
Fifth International Workshop on Worst-Case Execution Time Analysis (WCET
2005), July 2005.

248

http://www.embedded.com/news/embeddedindustry/200000893

[217] R. Kirner, A. Kadlec, P. Puschner, A. Prantl, M. Schordan, and J. Knoop,
“Towards a common WCET annotation language: Essential ingredients,” in
Proceedings of the Eighth International Workshop on Worst-Case Execution
Time Analysis (WCET 2008), July 2008.

[218] T. Harmon and R. Klefstad, “Toward a unified standard for worst-case execu-
tion time annotations in real-time Java,” in Proceedings of the Fifteenth Inter-
national Workshop on Parallel and Distributed Real-Time Systems (WPDRTS
2007). IEEE Computer Society, March 2007.

[219] B. Lisper, “Fully automatic, parametric worst-case execution time analysis,”
in Proceedings of the Third International Workshop on Worst-Case Execution
Time Analysis (WCET 2003), J. Gustafsson, Ed., July 2003, pp. 77–80.

[220] D. Kazakov and I. Bate, “Towards new methods for developing real-time sys-
tems: Automatically deriving loop bounds using machine learning,” in Proceed-
ings of the Eleventh International Conference on Emerging Technologies and
Factory Automation (ETFA 2006), September 2006.

[221] J. J. Hunt, F. B. Siebert, P. H. Schmitt, and I. Tonin, “Provably correct loops
bounds for realtime Java programs,” in Proceedings of the Fourth International
Workshop on Java Technologies for Real-time and Embedded Systems (JTRES
2006). New York, NY, USA: ACM Press, October 2006, pp. 162–169.

[222] R. Kirner and M. Schoeberl, “Modeling the function cache for worst-case ex-
ecution time analysis,” in Proceedings of the Forty-Third Design Automation
Conference (DAC 2007). San Diego, CA, USA: ACM, June 2007.

[223] W. Puffitsch, “picoJava-II in an FPGA,” Master’s thesis, Technischen Univer-
sität Wien, November 2007.

[224] “GNU Linear Programming Kit.” Available: http://www.gnu.org/software/
glpk/

[225] J. Gustafsson, “The worst case execution time tool challenge 2006,” in Pro-
ceedings of the Second International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2006), November 2006,
pp. 233–240.

[226] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. D. Michiel, “PapaBench:
A free real-time benchmark,” in Proceedings of the Sixth International Work-
shop on Worst-Case Execution Time Analysis (WCET 2006), July 2006.

[227] A. A. Avižienis, The Methodology of N-Version Programming. John Wiley and
Sons, 1995, ch. 2.

[228] S. S. Brilliant, J. C. Knight, and N. G. Leveson, “Analysis of faults in an
N-version software experiment,” IEEE Transactions on Software Engineering,
vol. 16, no. 2, pp. 238–247, February 1990.

249

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

[229] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, “re-
CAPTCHA: Human-based character recognition via web security measures,”
Science, August 2008.

[230] P. Puschner and R. Nossal, “Testing the results of static worst-case execution-
time analysis,” in Proceedings of the Nineteenth IEEE Real-Time Systems Sym-
posium (RTSS 1998). Washington, DC, USA: IEEE Computer Society, De-
cember 1998, pp. 134–143.

[231] P. E. Ceruzzi, A History of Modern Computing. MIT Press, 2003.

[232] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly, 2001.

[233] E. R. Harold, “Java’s new math, part 1: Real numbers,” October 2008.
Available: http://www.ibm.com/developerworks/java/library/j-math1/index.
html

[234] T. Veldhuizen, “What is a library?” Talk given at the Dagstuhl workshop
“Software Libraries: Design and Evaluation”, March 2005.

[235] K. Raman, Y. Zhang, M. Panahi, J. A. Colmenares, R. Klefstad, and T. Har-
mon, “RTZen: Highly predictable, real-time Java middleware for distributed
and embedded systems,” in Middleware, ser. Lecture Notes in Computer Sci-
ence. Springer Berlin, November 2005, pp. 225–248.

[236] R. Kirner, M. Grössing, and P. Puschner, “Comparing WCET and resource
demands of trigonometric functions implemented as iterative calculations vs.
table-lookup,” in Proceedings of the Sixth International Workshop on Worst-
Case Execution Time Analysis (WCET 2006), F. Mueller, Ed., 2006.

[237] J.-M. Dautelle, “Fully time deterministic Java,” in Proceedings of the AIAA
SPACE 2007 Conference and Exposition. American Institute of Aeronautics
and Astronautics, Inc., September 2007.

[238] “The SPARK examiner,” Praxis High Integrity Systems. Available:
http://www.praxis-his.com/sparkada/examiner.asp

[239] “SCADE suite,” Esterel Technologies. Available: http://www.
esterel-technologies.com/products/scade-suite/

[240] J. Kwon, A. Wellings, and S. King, “Assessment of the Java programming
language for use in high integrity systems,” SIGPLAN Notices, vol. 38, no. 4,
pp. 34–46, April 2003.

[241] J. Barnes, High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Addison-Wesley Professional, April 2003.

250

http://www.esterel-technologies.com/products/scade-suite/
http://www.ibm.com/developerworks/java/library/j-math1/index.html
http://www.ibm.com/developerworks/java/library/j-math1/index.html
http://www.praxis-his.com/sparkada/examiner.asp
http://www.esterel-technologies.com/products/scade-suite/

[242] A. Burns, “The Ravenscar profile,” ACM SIGAda Ada Letters, vol. XIX, no. 4,
pp. 49–52, 1999.

[243] N. Hamilton, “The A-Z of programming languages: Ada,” Computerworld,
April 2008.

[244] “JSR 302: Safety critical Java technology.” Available: http://jcp.org/en/jsr/
detail?id=302

[245] E. Y.-S. Hu, E. Jenn, N. Valot, and A. Alonso, “Safety critical applications
and hard real-time profile for Java: a case study in avionics,” in Proceedings
of the Fourth International Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2006). New York, NY, USA: ACM Press, October
2006, pp. 125–134.

[246] K. Nilsen, “Guidelines for scalable Java development of real-time systems,”
March 2006.

[247] J. Kwon, A. Wellings, and S. King, “Ravenscar-Java: A high integrity profile
for real-time Java,” in Proceedings of the 2002 Joint ACM-ISCOPE Conference
on Java Grande (JGI 2002). New York, NY, USA: ACM, November 2002, pp.
131–140.

[248] M. Schoeberl, H. Sondergaard, B. Thomsen, and A. P. Ravn, “A profile for
safety critical Java,” in Proceedings of the Tenth IEEE International Sympo-
sium on Object/component/service-oriented Real-time distributed Computing
(ISORC 2007), May 2007.

[249] M. Schoeberl, “Mission modes for safety critical Java,” in Proceedings of the
Fifth IFIP Workshop on Software Technologies for Future Embedded and Ubiq-
uitous Systems (SEUS 2007), May 2007.

[250] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,
J. Kiniry, P. Chalin, and D. M. Zimmerman, JML Reference Manual, Iowa
State University, May 2008.

[251] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt, “The KeY tool,”
Software and Systems Modeling, vol. 4, no. 1, pp. 32–54, February 2005.

[252] J. J. Chilenski and S. P. Miller, “Applicability of modified condition/decision
coverage to software testing,” Software Engineering Journal, vol. 9, no. 5, pp.
193–200, September 1994.

[253] M. R. Woodward, D. Hedley, and M. A. Hennell, “Experience with path analysis
and testing of programs,” IEEE Transactions on Software Engineering, vol. SE-
6, no. 3, pp. 278–286, May 1980.

251

http://jcp.org/en/jsr/detail?id=302
http://jcp.org/en/jsr/detail?id=302

[254] “Inquiry board traces Ariane 5 failure to overflow error,” SIAM News, vol. 29,
no. 8, October 1996.

[255] T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad, “Toward libraries for
real-time Java,” in Proceedings of the Eleventh IEEE International Symposium
on Object Oriented Real-Time Distributed Computing (ISORC 2008), May 2008,
pp. 458–462.

[256] Q. Li, Real-Time Concepts for Embedded Systems. CMP Books, July 2003,
ch. 13.

[257] F. Siebert, “Real-time garbage collection in multi-threaded systems on a single
processor,” in Proceedings of the Twentieth IEEE Real-Time Systems Sympo-
sium (RTSS 1999), Phoenix, Arizona, December 1999, pp. 277–278.

[258] R. Henriksson, “Scheduling garbage collection in embedded systems,” Ph.D.
dissertation, Lund Institute of Technology, 1998. Available: Henriksson1998.pdf

[259] M. Schoeberl and J. Vitek, “Garbage collection for safety critical Java,” in
Proceedings of the Fifth International Workshop on Java Technologies for Real-
time and Embedded Systems (JTRES 2007). New York, NY, USA: ACM,
September 2007, pp. 85–93.

[260] F. Siebert, “Proving the absence of RTSJ related runtime errors through data
flow analysis,” in Proceedings of the Fourth International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES 2006). New York,
NY, USA: ACM Press, October 2006, pp. 152–161.

[261] S. Smith, S. W. Lawson, and A. Lawson, “Can real-time software engineering
be taught to Java programmers?” in Proceedings of the Seventeenth Conference
on Software Engineering Education and Training (CSEET 2004). Washington,
DC, USA: IEEE Computer Society, March 2004, pp. 124–129.

[262] J. Yan and W. Zhang, “A time-predictable VLIW processor and its compiler
support,” Real-Time Systems, vol. 38, no. 1, pp. 67–84, January 2008.

[263] M. Pfeffer, T. Ungerer, S. Fuhrmann, J. Kreuzinger, and U. Brinkschulte, “Real-
time garbage collection for a multithreaded Java microcontroller,” Real-Time
Systems, vol. 26, no. 1, pp. 89–106, January 2004.

[264] T. Harmon and R. Klefstad, “A survey of worst-case execution time analysis for
real-time Java,” in Proceedings of the Ninth International Workshop on Java
and Components for Parallelism, Distribution and Concurrency (JAVAPDC
2007). IEEE Computer Society, March 2007.

[265] P. Puschner and G. Bernat, “WCET analysis of reusable portable code,” in
Proceedings of the 13th Euromicro Conference on Real-Time Systems (ECRTS
2001). Washington, DC, USA: IEEE Computer Society, 2001, pp. 45–52.

252

file://localhost/Users/trevor/Documents/School/UCI/Ph.D./Publications/Dissertation/Henriksson1998.pdf

[266] E. Y.-S. Hu, G. Bernat, and A. Wellings, “A static timing analysis environment
using Java architecture for safety critical real-time systems,” in Proceedings of
the Seventh IEEE International Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS 2002). Los Alamitos, CA, USA: IEEE Computer
Society, January 2002, pp. 77–84.

[267] J. J. Hunt, I. Tonin, and F. B. Siebert, “Using global data flow analysis on
bytecode to aid worst case execution time analysis for realtime java programs,”
in Proceedings of the Sixth International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2008). New York, NY, USA: ACM,
September 2008, pp. 97–105.

[268] J. Ventura, F. Siebert, A. Walter, and J. Hunt, “HIDOORS - a high integrity
distributed deterministic Java environment,” in Proceedings of the Seventh
IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS 2002). Los Alamitos, CA, USA: IEEE Computer Society,
January 2002, pp. 113–118. Available: http://www.hidoors.org/

[269] I. Bate, G. Bernat, G. Murphy, and P. Puschner, “Low-level analysis of a
portable Java byte code WCET analysis framework,” in Proceedings of the
Seventh International Conference on Real-Time Computing Systems and Ap-
plications (RTCSA 2000). Los Alamitos, CA, USA: IEEE Computer Society,
December 2000, pp. 39–48.

[270] I. Bate, G. Bernat, and P. Puschner, “Java virtual-machine support for portable
worst-case execution-time analysis,” in Proceedings of the Fifth IEEE Interna-
tional Symposium on Object-oriented Real-time distributed Computing (ISORC
2002), April 2002, pp. 83–90.

[271] J. Consortium, “Real-time core extensions,” September 2000.

[272] E. Y.-S. Hu, A. Wellings, and G. Bernat, “Deriving Java machine timing models
for portable worst-case execution time analysis,” in On the Move to Meaningfull
Internet Systems 2003: Workshop on Java Technologies for Real-Time and Em-
bedded Systems, ser. Lecture Notes in Computer Science, vol. 2889. Springer,
November 2003, pp. 411–424.

[273] Z. Chai, Z. Tang, L. Wang, and S. Tu, “An effective instruction optimization
method for embedded real-time Java processor,” in 2005 International Confer-
ence on Parallel Processing Workshops (ICPPW 2005). Los Alamitos, CA,
USA: IEEE Computer Society, June 2005, pp. 225–231.

[274] E. Y.-S. Hu, A. Wellings, and G. Bernat, “Gain time reclaiming in high
performance real-time Java systems,” in Proceedings of the Sixth IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2003). Los Alamitos, CA, USA: IEEE Computer Society, May 2003,
pp. 249–256.

253

http://www.hidoors.org/

[275] A. Corsaro and C. Santoro, “Optimizing JVM object operations to improve
WCET predictability,” in Proceedings of the Fourth International Workshop on
Worst-Case Execution Time Analysis (WCET 2004), June 2004, pp. 15–18.

[276] Z. Chai, W. Chen, Z. Tang, Z. Chen, and S. Tu, “Asynchronous transfer of con-
trol in the RTSJ-compliant Java processor,” in The Fifth International Confer-
ence on Computer and Information Technology (CIT 2005). IEEE Computer
Society, September 2005, pp. 764–770.

[277] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java and JML,” in
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS 2005), ser. Lecture Notes in Computer Science, vol. 3362. Springer
Berlin / Heidelberg, March 2005, pp. 108–128.

[278] C. Walls and N. Richards, XDoclet in Action. Manning Publications, December
2003.

[279] L. G. DeMichiel, L. Ümit Yalçinalp, and S. Krishnan, “Enterprise JavaBeans
specification,” August 2001.

[280] J. Gosling, B. Joy, G. L. S. Jr., and G. Bracha, The Java Language Specifica-
tion, 3rd ed., ser. The Java Series. Boston, Massachusetts: Addison-Wesley
Professional, June 2005.

[281] T. Lindholm and F. Yellin, The Java Virtual Machine Specification, 2nd ed.,
ser. The Java Series. Boston, Massachusetts: Addison-Wesley Professional,
April 1999.

[282] “Annogen.” Available: http://annogen.codehaus.org/

[283] S. Chiba, “Javassist — a reflection-based programming wizard for Java,” in
Proceedings of the ACM OOPSLA 1998 Workshop on Reflective Programming
in C++ and Java, October 1998.

[284] “JSR 269: Pluggable annotation processing API.” Available: http:
//jcp.org/en/jsr/detail?id=269

[285] M. M. Papi and M. D. Ernst, “Annotations on Java types,” November 2006.
Available: http://jcp.org/en/jsr/detail?id=308

[286] “OpenJDK.” Available: http://openjdk.java.net/

254

http://openjdk.java.net/
http://annogen.codehaus.org/
http://jcp.org/en/jsr/detail?id=269
http://jcp.org/en/jsr/detail?id=269
http://jcp.org/en/jsr/detail?id=308

Appendices

A A Survey of Worst-Case Execution Time Anal-

ysis for Java

While the theory of worst-case execution time has been addressed by hundreds of

research papers over the last two decades,2 fewer than twenty publications spanning

only six years have tackled the problem of Java in WCET analysis. Experimental

tools for performing WCET analysis in Java are even rarer, and commercial products

simply do not exist [264].

Yet the research accomplished thus far shows promise. As discussed in Chapter 3,

Java is an attractive platform for WCET analysis, and it offers a number of new

avenues of research. Advancements in this area are increasingly important as interest

in using Java for real-time systems grows.

As a complement to the existing work, this appendix provides a comprehensive survey

of efforts in combining WCET analysis with the Java domain. It is a snapshot of the

current state of the art and provides a convenient summary for future researchers in

this field.
2Kligerman’s and Stoyenko’s 1986 paper [24] is generally considered the first publication to ad-

dress the problem of WCET.

255

Each contribution has been categorized into one of four basic groups: 1) bytecode

as an intermediate representation, 2) high-level WCET analysis, 3) low-level WCET

analysis, and 4) miscellaneous work, a catch-all category for research that does not

fit cleanly into the first three. Where appropriate, a discussion of the strengths and

weaknesses of a technique or tool is also included.

A.1 Bytecode as an Intermediate Representation

The earliest known work to combine the Java domain with WCET analysis was

Bernat’s proposal [64] to use Java bytecode in WCET tools. Noting that WCET

analysis was not being adopted by industry practitioners, Bernat suggested that a

lack of portability in WCET tools was the cause. Existing software for WCET anal-

ysis was normally restricted to a single source language, a specific compiler, and a

unique configuration of processor, memory, and clock speed. As a result of these

constraints, the usual industry practice was to forgo these tools and rely instead on

ad hoc measurement, a more flexible but inefficient and error-prone technique that

often leads to overly optimistic WCET bounds.

To address this problem, Bernat proposed that Java bytecode could serve as an inter-

mediate representation for WCET tools, analogous to register transfer languages act-

ing as intermediate representations in compilers. The assumption was that if WCET

tools were to standardize on bytecode, they would be more portable, versatile, and

thus more attractive to industry.

The emphasis, then, was not on Java as a real-time programming language but rather

as a catalyst. For example, real-time programs written in C or Ada could be translated

to Java bytecode, then translated from bytecode to machine code. This multi-stage

process would, in theory, allow a single WCET tool designed only for bytecode to

256

analyze both C and Ada programs without knowledge of either language.

Compared to most instruction sets, Java bytecode contains enough high-level infor-

mation to perform a full WCET analysis, but this benefit does not come for free.

The move to bytecode brings new challenges, such as how to pass WCET annota-

tions from an arbitrary source language to bytecode and how to integrate knowledge

of the target hardware into the bytecode analysis.

Bernat offered a somewhat awkward solution to the first problem: Programmers

would be required to invoke methods in a predefined class whenever a WCET an-

notation was required. For instance, the following Ada statement would indicate a

maximum loop bound of 10:

WCETAn. Loopcount (1 0) ;

Bernat also created a prototype tool called Javelin to demonstrate these ideas. It was

able to parse Java class files, analyze control flow, and extract loop bound annotations.

A diagram of Javelin’s operation is shown in Figure A.1.

Discussion

Compared to established techniques, this style of annotation mingles non-functional

metadata—that is, the WCET information—with the normal source code statements,

making the program more difficult to read. In addition, tools for compiling arbitrary

C3 or Ada4 source to Java bytecode remain primitive. Most such tools have not

progressed beyond the prototype stage or have serious limitations that prevent their

use in day-to-day operations. Jazillian, for example, a C-to-Java translator, makes

3See http://www.jazillian.com/competition.html for a comparison of C-to-Java translators.
4Examples of Ada-to-Java translators include AppletMagic, ObjectAda, and JGNAT.

257

http://www.jazillian.com/competition.html

Source program with annotations

Compiler (Java, C, or Ada)

Java class file

Virtual machine timing model

WCET tool

Control flow analysis

Data flow analysis

Loop identification

Annotation extraction

Virtual machine mapping

Graph collapsing

WCET Java virtual machine

Stripped Java class file

Figure A.1: The basic operation of the Javelin tool.

no guarantee that the resulting Java code can even be compiled.

For these reasons, the notion of bytecode as an intermediate representation for WCET

tools has failed to reach industry practice and has not progressed beyond Bernat’s

initial research.

A.2 High-level Analysis for the Java Language

In contrast to low-level analysis, high-level (meaning above bytecode level) WCET

analysis for Java is relatively simpler. The language is similar to existing ALGOL-like

imperative languages, so it builds upon a vast body of existing work in compilers and

258

high-level WCET theory. Research in this area is therefore more mature because it

has received attention from a greater number of researchers.

The earliest work in high-level WCET analysis for Java comes from Puschner [265].

He noted that significant effort had been expended on making the functionality of

code portable, but there were no mechanisms for porting or distributing information

about the execution time of code. To solve this problem, he centered on the idea of

“abstract” timing information. The goal was to collect and store as much information

as possible about timing, such as the control flow and loop bounds, without knowing

the concrete details of the processor, the cache, and so on. This abstract information

could then be ported to any processor, saving the work of running a complete analysis

for each target architecture. Figure A.2 provides a diagram of this process.

As a convenient side-effect, this solution also addresses the problem of WCET in

third-party libraries. Such libraries make developers more efficient by providing stan-

dard functionality—encryption, networking, or graphics processing, for example—in

a reusable package. Unfortunately, developers of real-time systems are often cut off

from such benefits because these libraries provide no WCET information. End users

usually do not wish to perform this analysis themselves, and even if the vendors are

willing to perform a WCET analysis and add the necessary source code annotations,

they may not wish to expose this code to the outside world. The abstract timing ap-

proach advocated by Puschner solves these problems by allowing vendors to bundle

WCET information with their code in a portable, reusable format that keeps source

code private.

Like Puschner, Hu [266] also developed techniques for making WCET information

more portable. Instead of performing an analysis, however, Hu focused on WCET

source code annotations, introducing a new format called XAC, or Extensible Annota-

tion Class. Similar in scope to Bernat’s WCETAn technique [64], XAC encodes timing

259

Developer's platform

Target platform

Software
distribution

Abstract analysis

Concrete analysis

WCET
analysis

Code + reusable, portable WCET

Code + WCET bound

Code + path information

Code + reusable, portable WCET

Figure A.2: Puschner proposed using Java bytecode as a layer of abstraction in
WCET analysis, whereby the timing information propagates from the abstract to the
concrete.

hints as source code comments rather than explicit method calls. This improvement

over WCETAn eliminates the relatively complex task of re-writing the bytecode to

remove the method calls (in order to eliminate their performance penalty). Hu also

specified an extensible file format for bundling WCET annotations with their corre-

sponding class files.

Later that same year, Hu extended his XAC format to handle the problem of dynamic

dispatch [66]. Typical in object-oriented programs, dynamic dispatch of method

invocations (i.e., polymorphism) is simply disallowed in most WCET tools. Such tools

are normally designed for procedural languages, such as C, where dynamic dispatch

is much less common. In Java, however, almost every method call requires dynamic

260

c l a s s A
{

//@ Labe l (A .m1())
pub l i c void m1()
{ . . . }

}

c l a s s B extends A
{

//@ Labe l (B .m1())
pub l i c void m1()
{ . . . }

}

A a = new A() ;
B b = new B() ;
. . .
f o r (i n t i = 0 ; i < 5 ; i++)
{

i f (i == 2)
a = b ;

//@ 2∗UseWCET(A.m1)+3∗UseWCET(B.m1))
a .m1 () ;

}

Figure A.3: Hu’s Extensible Annotation Class technology addressed the problem of
WCET analysis in the presence of polymorphism. Note how the annotation inside
the loop body disambiguates the method invocation.

dispatch. Hu addressed this problem by providing new WCET annotation types

designed for class hierarchies. For example, the programmer could specify a subset

of child classes that are valid for a particular method invocation on a base class (see

Figure A.3). This simplistic approach dumps most of the work in the programmer’s

lap, relying entirely on manual annotations to tighten the WCET bounds of dynamic

dispatch.

In stark contrast with Hu’s style, Guedes [178] dispensed with annotations altogether,

explaining how Gustafsson’s “abstract interpretation” technique [170] could be ap-

plied to Java. The goal was to remove the need for annotations as much as possible,

saving the trouble of having to provide WCET parameters (loop bounds in particular)

261

in many cases. This very preliminary work was largely theoretical and has not been

pursued.

Hunt offered a similar approach for provably correct loop bounds in real-time Java [221,

267]. It combined data flow analysis with formal deductive verification to arrive at a

final bound. Although this technique still relies on source code annotations supplied

by the developer, Hunt claims that they are much simpler than functional annota-

tions (e.g., loop invariants for correctness proofs) and can be verified for correctness.

Figure A.4 shows an example of Hunt’s proposed loop annotation syntax.

The remaining work in high-level analysis comes from a European initiative to advance

the role of Java in real-time systems. Dubbed HIDOORS (High Integrity Distributed

Object-Oriented Realtime Systems) [268], it had many goals: a real-time garbage col-

lector, a graphical UML-based modeling tool, a distributed real-time event manager,

and a WCET analysis tool. While the real-time garbage collector has seen new life as

part of the Jamaica Virtual Machine [75], the WCET tool never progressed beyond

the specification stage.

A.3 Low-level WCET Analysis for Java Bytecode

WCET analysis of bytecode is only a partial solution. Computation of the actual

WCET requires low-level analysis that takes into account the particular timing char-

acteristics of a target processor.

Toward that end, Bate expanded on Bernat’s work by developing a framework for low-

level WCET analysis of Java bytecode [269]. To remain portable among processors,

the framework differs from traditional approaches: Instead of calculating the WCET

of each basic block (which is impossible at the bytecode level), it calculates bytecode

262

/∗@ p r i v a t e no rma l b ehav i o r
@ r e q u i r e s l e g s 1 != n u l l && l e g s 1 . l eng th >0 &&
@ l e g s 2 != n u l l && l e g s 2 . l eng th >0 &&
@ i3 >0 && i3<l e g s 2 . l e n g t h ;
@ a s s i g n a b l e i1 , i 2 ;
@ en s u r e s t r u e ;
@∗/

pr i va te void f i n d I n t e r s e c t i o n (Leg [] l e g s1 , Leg [] l e g s2 , i n t i 3)
{

i 1 = l e g s 1 . l e n g t h − 1 ;
i 2 = 0 ;
i n t j = 0 ;
i n t k = i 3 ;
Leg l e g ;

/∗@ a s s i g n a b l e l eg , j , k , i1 , i 2 ;
@ d e c r e a s e s (l e g s 1 . l e n g t h − j) ;
@∗/

whi le (j < l e g s 1 . l e n g t h)
{

l e g = l e g s 1 [j] ;
i f (l e g i n s tanceof KFixLeg)
{

k = i 3 ;
/∗@ a s s i g n a b l e k , i1 , i 2 ;

@ d e c r e a s e s (k + 1) ;
@∗/

whi le (k >= 0)
{

i f (l e g == l e g s 2 [k])
{

i 1 = j ;
i 2 = k + 1 ;
return ;

}
k−−;

}
}
j ++;

}
}

Figure A.4: An example of Hunt’s proposed annotations for loop bound verification.

frequencies. When a particular target architecture is known, the frequency vectors

can then be mapped to a concrete timing model. Two years later, Bate integrated

this approach into a single framework [270] that combines the high-level [64] and

263

low-level [269] techniques in one vertical package.

Instead of concentrating on a portability solution for WCET analysis tools, Hu tar-

geted the Java platform itself. Citing the growing interest in pure, 100% Java real-

time specifications, such as the RTSJ [29] and the Real-time Core Extensions [271],5

Hu observed that none offered any mechanism for WCET analysis. In addition, exist-

ing analysis techniques were exclusive to procedural programming languages, ignoring

the dynamic dispatching features of Java.

Hu therefore adapted Bernat’s existing WCET framework for the needs of Java, re-

branding it the XRTJ (eXtended Real-Time Java) [215]. Essentially a refinement

of this existing framework, it added one notable new feature for low-level WCET

analysis. Specifically, XRTJ prescribed a measurement-based technique for deriving

a timing model of an arbitrary Java virtual machine [272]. This timing model is

simply a performance profile, a benchmark of the target processor’s ability to interpret

bytecodes in the presence of an operating system and virtual machine. The resulting

WCET is therefore an estimate and does not provide the hard guarantee of a static

analysis. However, it works across all Java systems and requires no modifications to

the virtual machine.

Discussion

These efforts are the only published work on low-level WCET analysis for Java byte-

code. This raises the question of why other groups have not pursued the same chal-

lenge. The explanation is manifold:

• Even today, the concept of real-time Java is relatively new. Reliable implemen-

5The RTSJ and the RTCE were two competing real-time specifications for Java. Although they
were largely similar, the RTSJ had the support of Sun. As a result, all development of RTCE has
ceased, and the J Consortium has disbanded.

264

tations of the RTSJ, for example, became available only in the last few years.

Despite new large-scale projects [60], acceptance of Java for real-time systems

is still limited, even among the research community.

• Low-level analysis of bytecode is extremely difficult. Mapping a non-Java lan-

guage to bytecode is a formidable challenge by itself. In addition, the bytecode

must be translated to an arbitrary target architecture, all the while maintaining

tight WCET bounds. This requires a detailed analysis to account for pipeline

and cache effects, not to mention the overhead of the operating system and the

virtual machine. As a result of this complexity, the WCET analysis is often

pessimistic, counteracting the benefits that bytecode portability brings.

• The multiple layers of OS, VM, and processor complicate low-level bytecode

analysis. One way to mitigate this problem is to adopt a Java-native processor

such as Schoeberl’s JOP [120] or aJile System’s aJ-100 [73]. These processors

collapse the vertical stack, removing the OS and VM layers entirely and greatly

simplifying low-level analysis. Until recently, however, viable Java-native pro-

cessors such as these were unavailable, making them even less prevalent in the

research community than real-time Java. In addition, restricting low-level anal-

ysis to these processors limits the portability, and thus the acceptance, of any

analysis technique.

These issues have substantially slowed research in low-level bytecode analysis.

A.4 WCET Analysis for Java-specific Processors

Modern CPU architecture is the WCET researcher’s worst nightmare. Large pipelines,

branch prediction, and sophisticated multi-level caching have greatly improved aver-

265

age throughput, but not without cost. Providing a tight guarantee on worst-case

execution time is horrendously difficult on these superscalar processors.

As a result, new processor architectures have emerged that are designed specifically

for real-time systems, making them an easier target for WCET analysis. An example

from the Java domain is JOP, or Java Optimized Processor [120], a WCET-aware

CPU that executes bytecode natively without the need for an OS or virtual machine.

JOP offers three key features that allow bytecode execution time to be predicted

tightly:

• JOP translates bytecodes into microcode instructions, each of which executes

in a single cycle. And because there are no dependencies between bytecodes,

calculating WCET of basic blocks is a simple matter of summing the cycle count

of each bytecode.

• JOP has a short four-stage pipeline, allowing branch prediction logic (which

complicates WCET analysis) to be discarded with minimal performance loss.

• JOP provides a unique instruction cache specially designed for WCET analysis

in Java. It is based on the observation that no branch instructions in Java

jump outside of a method; therefore, the “method cache” in JOP [135] is based

on whole methods rather than small cache lines. Consequently, hit and miss

detection occurs only during method invocation and return, allowing WCET

analysis of the cache to be ignored entirely during the execution of individual

methods.

To demonstrate JOP’s ability to yield tight WCET bounds, a basic IPET-based ana-

lyzer called WCA was created [135]. It understands JOP’s method cache architecture

266

and supports WCET analysis across method invocations. (Section 3.4 describes the

JOP in more detail, and Section 5.1.2 explains its method cache.)

In other work on Java-specific processors, Chai [273] developed a technique for pre-

processing class files that were destined for embedded systems. Noting that such

systems normally prohibit dynamic class loading and garbage collection, Chai relies

on these assumptions to replace certain bytecodes with “optimized” variants. These

altered bytecodes exchange flexibility for fewer cycles per instruction, leading to a

reduced WCET. As such, Chai’s proposal is better described as a speed optimization

rather than a WCET analysis technique.

A.5 Other Work in WCET Analysis for Java

Portability, low-level analysis, and high-level analysis are where most WCET research

for Java has been applied. This section presents work in WCET analysis that does

not fall cleanly into one of these three main categories.

Persson describes a development environment for real-time Java that incorporates

WCET information [206]. Called Sk̊anerost, it displays the WCET of a particular

method in the margins of its source code editor. The WCET value is updated con-

tinuously, as the source code changes, to provide feedback to the developer, as shown

in Figure A.5. (Persson does not describe exactly how this WCET value is obtained;

an analysis tool and the appropriate annotations are assumed to be available.)

Hu developed a “gain time” reclamation framework for hard real-time Java [274].

Based on the assumption that real-time tasks often do not follow the worst-case path

at run-time, the goal is to reclaim this “gain time” by detecting when a task has

completed before its predicted worst-case time. A lower-priority task can then be

267

Compiler

WCET analysis

Live memory
analysis

Virtual machineDeveloper

Scheduling parametersFeedback (WCET predictions)

Code modifications Java bytecode

Skånerost

Figure A.5: The flow of WCET information in the Sk̊anerost system puts the devel-
oper “in the loop” to support interactive WCET analysis.

executed, increasing overall CPU utilization. The novelty of Hu’s approach lies in

the ability to track object types as they change (via a so-called Object Type Lifetime

Graph), thus yielding tighter WCET bounds than would otherwise be possible in

dynamic dispatch languages like Java.

Corsaro addressed the problem of obtaining tight WCET bounds on memory alloca-

tions in Java [275]. Borrowing principles from UNIX file systems, the approach gains

predictable allocation time at a cost of wasted space. The basic idea is to permit

fragmentation of memory chunks. Allocation and deallocation of the chunks can then

be accomplished in linear time, thereby improving the WCET of memory operations.

Finally, Lei focused on tightening the WCET of RTSJ’s asynchronous transfer of con-

trol (ATC) mechanism [276]. Conventional ATC implementations rely on a recursive

procedure to locate the appropriate catch class, making WCET analysis difficult. Lei

solves this problem by performing class resolution and linking at compile-time rather

than run-time (if certain assumptions about the run-time environment can be made).

ATC then reduces to a simple comparison, and its WCET is more predictable.

268

A.6 Conclusion

Given that the entire collective work in WCET analysis for Java can be summarized

so briefly, much remains to be done. Most research projects have not progressed

beyond the prototype stage, and several open problems persist:

• How can dynamic dispatch be handled in an automatic way (without a total

dependency on manual annotations [66])?

• Given the difficulty of performing a fully static analysis on the Java stack

(including OS and VM layers), could measurement-based or probabilistic ap-

proaches be a sufficient replacement?

• How can garbage collection latencies be incorporated into a WCET analysis?

Performing WCET analysis in the presence of dynamic dispatch, garbage collection,

and multiple layers of abstraction is still very much an open problem. While it

may be possible to adapt existing commercial tools for C, such as RapiTime, for

measurement-based analysis of Java, the best solution remains unclear, and many

challenges still lie on the horizon.

B WCET Annotations in Java

WCET analysis is far from trivial. The analysis algorithm must determine not only

when a program finishes but also whether it will ever finish at all. This problem of

non-termination has been known since 1936 when Alan Turing proved that, given an

arbitrary program, a decision as to whether it will finish or will run forever does not

exist [169].

269

1 pub l i c c l a s s Bubb leSor t
2 {
3 pub l i c s t a t i c void main (S t r i n g [] a r g s)
4 {
5 i n t n = I n t e g e r . p a r s e I n t (a r g s [0]) ;
6 double a [] = new double [n] ;
7
8 // F i l l the a r r a y w i th random numbers
9 f o r (i n t i = 0 ; i < n ; i++)

10 a [i] = Math . random () ;
11
12 Bubb leSor t . s o r t (a) ;
13 }
14
15 // The s t anda rd bubb l e s o r t a l g o r i t hm
16 pr i va te s t a t i c void s o r t (double [] a)
17 {
18 // @WCET loopMax=9
19 f o r (i n t i = 0 ; i < a . l e n g t h − 1 ; i++)
20 {
21 // @WCET loopMax=9
22 f o r (i n t j = 0 ; j < a . l e n g t h − 1 − i ; j++)
23 {
24 i f (a [j + 1] < a [j])
25 {
26 double tmp = a [j] ;
27 a [j] = a [j + 1] ;
28 a [j + 1] = tmp ;
29 }
30 }
31 }
32 }
33 }

Figure B.6: WCET tools require knowledge about the constraints under which a
program will run. Here, the developer “knows” the input size will never be larger
than 10 and has inserted WCET annotations accordingly.

The consequence for WCET analysis is that no tool can examine an arbitrary real-

time Java program and derive its worst-case bound. As shown in Figure B.6, the

WCET may depend on knowledge that only exists at run-time, stifling any attempt

at static analysis.

A bound on WCET may be undecidable in general, but real-time systems are hardly

the arbitrary programs described by Turing. In a real-time environment, the developer

270

is normally able to (and, in many cases, must) exercise careful control over input

parameters and program complexity. As a result, certain assumptions can be provided

to a WCET analysis tool that make its job tractable. These assumptions usually take

the form of loop annotations.6

For example, turning again to Figure B.6, the developer knows something about

the run-time environment and is able to make an assumption: The maximum array

size (that is, the args[0] parameter) for any execution of this program will never

be larger than 10. The developer was thus able to annotate the source code on

lines 18 and 21 with the maximum possible iteration of each loop. By propagating

this special knowledge from developer to analysis tool, annotations provide much

tighter WCET bounds than would otherwise be possible.

B.1 Prior Work in WCET Annotations for Java

Given that WCET annotations have been used for many years in real-time C and Ada

software, one might expect a standard, or at least a de facto convention, to materialize.

In reality, a number of competing styles of annotation have been developed for real-

time Java. Each one embodies slightly different mechanisms for syntax, storage, and

specification, making them all mutually incompatible.

This section provides a brief survey of these annotation styles for Java. It includes only

the research literature and does not consider commercial tools and other annotation

styles that may be found in industry.

The earliest work in WCET annotations for Java comes from Bernat, who proposed a

portable WCET analysis tool [64]. In this case, portable refers to language portability:

6Loop annotations are just one of many different types of WCET annotations. They belong
to a broader category known as program semantics annotations [216] or program-specific annota-
tions [217], which include recursion bounds, variable value restrictions, and others.

271

Table B.1: A sample of WCET annotation styles in real-time Java

Tool Examples Comments

WCETAn [64] WCETAn.Loopcount(20);
WCETAn.Define Path(l);
WCETAn.Scope S =

new WCETAn.Scope();

Implemented as method calls
instead of comments for binary
portability.

XAC [266] //@ Loopcount(100)
//@ Mode(Quick Mode)
//@ UseWCET(
AirTempSen.AccessSensor(V))

Traditional comment-based
mechanism. Has been extended
to handle polymorphic method
calls.

Sk̊anerost [206] /*$ loop-bound 100 */
/*$ time-bound 25ms */
/*$ path-bound 10 */

Departs from the popular
convention of using @ as the
start token in annotations,
opting for $ instead.

WCA [135] //@WCA loop=10 Currently supports loop bound
constants only.

The tool was designed for analyzing Java, C, Ada, and any other language that could

be translated to Java bytecode. To achieve such portability, the source code must

invoke methods in a predefined class whenever a WCET annotation is required. (See

Table B.1 for an example.) Compared to traditional annotations, this style mingles

non-functional metadata—that is, the WCET information—with the normal source

code statements, making programs more difficult to read.

The XRTJ project [215] implemented WCET annotations in a more traditional way.

All annotations appear as comments with the characters //@ for single lines and

/*@ . . . @*/ for multiple lines [266]. The XRTJ compiler parses these lines and

writes them to an XAC (Extensible Annotation Class) file, an XML-like text file that

is paired with its class in a real-time Java program. The XRTJ analyzer then reads

each XAC file to determine loop bounds, timing modes, and other details necessary to

derive the WCET. Hu later extended the XAC format to capture dynamic dispatch

(i.e., polymorphism) semantics [66]. XRTJ is also notable as the first research project

272

to suggest the idea of embedding annotations in Java class files [274].

The Java development environment Sk̊anerost also relies on annotations to obtain

information that is difficult for a tool to deduce but often obvious to a programmer.

As usual, the annotations are expressed as source code comments adhering to a special

syntax that can be identified by an analysis tool but ignored by the Java compiler.

Sk̊anerost’s approach differs from most others by providing annotations not only for

loop bounds and path constraints but also the size and shape of data structures.

This information is vital to the live memory analysis of Sk̊anerost’s real-time garbage

collector.

In more recent work, Schoeberl and Pedersen implemented a WCET analyzer for

JOP [135]. This tool introduced yet another syntax for annotations. Although it still

used the same //@ starting token, the syntax of the annotations differed from the

XRTJ project, making the tools incompatible with each other.

Despite these prior research efforts, neither of the industry standards for real-time

Java, RTSJ [29] nor RTCE [271],7 provides any mechanism whatsoever for annota-

tions. The lack of support for annotations is puzzling, especially given the importance

of WCET as outlined in Section 2.1.

B.2 A Lack of Standards

Clearly, no single convention for WCET annotations has taken hold, resulting in a

contradiction of Java’s mantra: “Write once, run anywhere.” Real-time Java pro-

grams designed for one WCET analysis tool must be rewritten for other tools. The

absence of a single annotation standard also makes the tools themselves more difficult

to implement. Even if they all agreed on the same starting token (e.g., //@), several

7RTCE is now defunct, supplanted by the RTSJ.

273

unresolved issues remain:

• What are the syntax and semantics for the string following the starting token?

• After an annotation is parsed, where is the information stored, and how do

lower-level tools retrieve it?

• Is there a formal specification to ensure compatibility? Who ratifies it and who

maintains it?

The end result is that each new WCET analysis tool must reinvent the wheel when

it comes to annotations. Even if a common syntax were chosen, there are no open,

reusable libraries for parsing, storing, and extracting the annotations. For instance,

a high-level WCET analysis tool may write annotation data to a file format that

a low-level tool cannot understand. These obstacles prevent interoperability among

tools, lengthen their development cycles, and impede the overall progress of research

into real-time systems.

B.3 A Standard for WCET Annotations in Java

In the non-real-time Java domain, a similar situation had already transpired. The

Java Modeling Language [250], the ESC/Java2 [277] static checker, XDoclet [278],

and various other software offered custom, incompatible annotation systems for Java

source code. In addition, Java’s frameworks for server software development, such as

Enterprise JavaBeans [279], had become increasingly complex due to an explosion of

metadata. Deploying components to a web server, for example, required maintenance

of separate (and unwieldy) XML files to describe remote interfaces, database-to-object

mappings, and so on.

274

To solve both problems, the Java community proposed a standard framework for

annotations. The basic idea was to encapsulate common code patterns into sin-

gle statements—annotations—embedded directly into the source code. Rather than

manage source code and metadata separately, taking pains to keep them in sync,

programmers could attach annotations directly to the source code constructs they

describe. This approach increases the power and convenience of annotations. It

enables, for example, the canonical getter/setter methods:

pr i va te i n t s en so rRead i ng ;

pub l i c i n t ge tSenso rRead ing () {

return s en so rRead i ng ;

}

pub l i c void s e tSen so rRead i ng (i n t s en so rRead i ng) {

t h i s . s en so rRead i ng = sen so rRead i ng ;

}

to be condensed to:

@prope r ty i n t s en so rRead i ng ;

This style is a significant shift because, unlike the techniques described in Section B.1,

the annotations are no longer jury-rigged as comments. Instead, they are first-class

objects in the Java language. They can have parameters and must conform to type-

checking rules. Such a substantial change to the language, which also demanded spe-

cial compiler support, led to formal review under the Java Community Process (JCP):

a public, cooperative system for adopting new technologies as official Java specifica-

tions.

275

The proposed annotation framework was submitted to the JCP as JSR-1758 and met

final approval in September 2004. That same month, Sun released Java 5, Standard

Edition, which included support for JSR-175 annotations. A new edition of the

Java Language Specification [280] was published the following year to formalize these

annotations and ensure that tools and libraries using them would remain compatible

with each other. Today, annotations are a standard, well-defined part of the Java

platform.

Storing Java Annotations

One of the advantages of Java annotations,9 and a key departure from many existing

WCET annotation frameworks, is that the annotation data is stored directly in class

files. Embedding annotations within classes simplifies code management because a

separate file format for metadata need not be maintained. Also, existing mechanisms

for storing, distributing, and deploying class files can readily be used for annotation

data. For instance, a build script that packages a class library into a JAR file (Java

ARchive) will automatically package annotations as well.

The annotation standard achieves this simplicity by building upon an existing Java

mechanism for bundling metadata with class files. Known as class file attributes, this

mechanism has been part of the Java virtual machine specification since its inception.

It defines an area at the end of the class file for storing any kind of structured data,

such as the line number table, the source file name, and even the Java bytecode itself.

(For a complete description of class file attributes, refer to Section 4.7 of the Java

Virtual Machine Specification [281].)

8JCP proposals begin life as a numbered Java Specification Request, or JSR, and are available
from http://jcp.org/.

9From this point forward, “Java annotations” refers to the JSR-175 standard.

276

http://jcp.org/

Java compilers and other code generators are permitted to emit class files containing

new attributes, and Java virtual machine implementations are prohibited from refus-

ing to load class files simply because of the presence of some new attribute. Thus,

class file attributes are extensible and may support new attributes at any time without

sacrificing backward compatibility.

The JSR-175 specification takes advantage of this extensibility by using it to store

annotations. As illustrated in Figure B.7, the spec defines several new class file

attributes for holding annotation data. It reserves their names to avoid conflicting

with other attributes, and it formalizes their structure so that third-party tools know

how to access them. For instance, the RuntimeInvisibleAnnotations attribute represents

annotations that Java’s reflection API should ignore.

Creating Java Annotations

Conveniently, programmers need not write to these attributes directly. The Java

compiler generates them automatically when compiling Java source code containing

annotations. For example, Java 5 includes a few built-in annotation types such as

SuppressWarnings:

@SuppressWarnings ({ ” d e p r e c a t i o n ” })

pub l i c void myMethod () { . . . }

Compiling this code results in a class file with a RuntimeInvisibleAnnotations attribute

pointing to the SuppressWarnings annotation type. As expected, compilers will not

print deprecation warnings for methods annotated with this type. Furthermore, the

“invisible” specifier tells virtual machines not to load the attribute into memory

because it is useful only at compile time.

277

Attributes

Header

Constant pool

Access rights

Interfaces

Fields

Methods

Class file

RuntimeInvisibleAnnotations

RuntimeVisibleAnnotations

AnnotationDefault

RuntimeInvisibleParameterAnnotations

RuntimeVisibleParameterAnnotations

RuntimeVisibleAnnotations

Java Annotation Attributes

Figure B.7: This diagram of Java’s class file format shows how JSR-175 annotations
are stored as attributes at the end of the file.

Custom annotations can be created easily, as well. Imagine a real-time control sys-

tem that must respond to a sensor change and actuate a motor within fifty millisec-

onds. This requirement could be encoded as an annotation, perhaps called MaxAl-

lowableWCET, and attached directly to the very method that handles the response.

WCET tools analyzing the method could then print a warning if the calculated WCET

exceeds the specified WCET.

Creating this sort of annotation requires defining an annotation type that resembles

a traditional Java interface:

278

@Target (ElementType .METHOD)

pub l i c @ i n t e r f a c e MaxAllowableWCET {

double s econds () ;

}

Here, the seconds method declares a parameter for the annotation type, while the

Target annotation (actually a meta-annotation, since it annotates an annotation) tells

the compiler that this annotation type is only permissible on method declarations.

After compiling the annotation type, using it is a simple matter:

@MaxAllowableWCET(seconds =0.05)

pub l i c void actuateMotor () { . . . }

Reading Java Annotations

Tools such as WCET analyzers need to read the annotations programmers have writ-

ten, and Java provides a facility for this. Java 5 includes a new package, java.lang.anno-

tation, and an expanded Reflection API to access annotations. Figure B.8 shows a sim-

ple example of how MaxAllowableWCET annotations can be detected using this API.

(For the example to work, the MaxAllowableWCET annotation type must have a re-

tention policy of RUNTIME so that it is visible to the virtual machine. See Table B.2

for a list of retention policies.)

In addition to this built-in mechanism, a number of third-party frameworks have

been developed that can assist in reading and manipulating Java annotations: Anno-

gen [282], ASM [137], and Javassist [283], to name a few. All of these work with the

279

import j a v a . l ang . r e f l e c t . ∗ ;

pub l i c c l a s s CheckWCETAnnotations
{

pub l i c s t a t i c void main (S t r i n g [] a r g s) throws Excep t i on
{

f o r (Method m : C l a s s . forName (a r g s [0]) . ge tDec la redMethods ())
{

i f (!m. i sAnno t a t i o nP r e s e n t (MaxAllowableWCET . c l a s s))
System . out . p r i n t l n (” E r r o r : A WCET anno t a t i on i s m i s s i n g . ”) ;

}
}

}

Figure B.8: Annotations are stored as low-level class attributes, but high-level tools
can read them using Java’s Reflection API. This example code uses the API to verify
that all methods in a given class are annotated with the MaxAllowableWCET type
described in Section B.3.

Table B.2: Java annotation retention policies

Policy Description

SOURCE The annotation is not stored in the class file; it is simply discarded at
compile-time.

CLASS The annotation is stored in the class file but is not loaded into
memory.

RUNTIME The annotation is stored in the class file and loaded into memory at
run-time so that it is visible to Java’s Reflection API.

same Java annotation standard, so unlike the current situation with WCET analysis,

annotations created by one tool can be accessed by another.

Weaknesses of Java Annotations

While standardization, portability, and validation are the greatest strengths in Java’s

annotation facility, it also has some serious drawbacks. Chief among them is a re-

striction on where annotations can be placed in the source code: They can act only as

declaration modifiers. They cannot annotate method calls, loops, and other program

280

elements. For example, the following code is illegal:

@LoopBound (max=10)

whi le (! bu f f e rEmpty) { . . . }

An explanation for this restriction comes from Appendix II of the JSR-175 specifica-

tion:

Why can’t you annotate arbitrary program elements such as

blocks and individual statements?

This would greatly complicate the annotation syntax: We would have to

sacrifice the simplicity of saying that annotations are simply modifiers,

which can be used on declarations.

In other words, bolting a totally new annotation mechanism onto an already mature

and established language like Java is no small task. It requires extensive cross-cutting

changes to the virtual machine, class file format, and compiler. Restricting the scope

of the changes to declarations made the implementation tractable and allowed Java

to support a limited annotation syntax immediately after the proposal’s ratification,

rather than wait years for a fully functional and comprehensive mechanism to evolve.

Another limitation is that Java’s Reflection API can only read annotations that have

been stored in class files. Source code with annotations must first be compiled before

the annotations can be read. A more serious implication is that if an annotation type

has a SOURCE retention policy, it cannot be accessed at all without third-party tools

that are able to parse Java source code.

The Java community has recognized these weaknesses and responded with a series of

proposals submitted to the JCP. For example, JSR-269 [284] provides a standard API

281

for interacting with annotation processors such as Annogen. It also provides an

interface for processing annotations in source files. The proposal was approved and

implemented in Java 6.

Another proposal, JSR-308 [285], allows annotations to be placed where types are

used, not just where they are declared. For instance:

myStr ing = (@NonNull S t r i n g) myObject ;

Another example:

i n t s i z e () @Readonly { . . . }

This relaxation allows verification tools and defect finders to work with standard

Java annotations. The proposal has been approved and will likely be implemented in

Java 7.

Table B.3 summarizes these current and former proposals for improving Java’s an-

notation facility. Some have already been implemented in Java 6, while others have

been approved but not yet scheduled for implementation until Java 7.

B.4 Applying Java’s Annotation Standard to WCET

Despite the progress in enabling Java annotations to support modeling and checking

tools, there has been virtually no attention given to making them suitable for WCET

analysis tools. The lack of emphasis is unfortunate because, compared to the existing

comment-based systems, Java’s built-in annotations offer an attractive alternative.

In particular:

282

Table B.3: Proposed specifications for improving Java’s annotation facility

Proposal ID Description

JSR-181 Defines a set of annotations for web services. The proposal was
implemented in Java 6.

JSR-250 Defines a set of annotations for general use. The proposal was
implemented in Java 6.

JSR-269 Provides a standard API for interacting with annotation
processors such as Annogen. Also provides an interface for
processing annotations in source files. The proposal was
implemented in Java 6.

JSR-303 Defines a set of annotations for validating JavaBeans. The
proposal was approved and will likely be implemented in Java 7.

JSR-305 Defines a set of annotations for defect-detection tools such as
FindBugs. The proposal was approved and will likely be
implemented in Java 7.

JSR-308 Allows annotations to be placed where types are used, not just
where they are declared. For example: myString = (@NonNull
String)myObject; The proposal was approved and will likely be
implemented in Java 7.

Standards-based Java’s annotation mechanism solves the standards issues raised

in Section B.2.

Validation Unlike most comment-based systems, Java annotations are highly struc-

tured and type-safe. For instance, the Java compiler can guarantee that an

annotation designed for methods is not accidentally used to annotate other

source code constructs.

Convenience With WCET annotations implemented as Java annotations, timing

information and code can be bundled into the same class file. This simplifies

code management and distribution. For example, a class library for real-time

systems can include timing information in the library itself. No extra files and

no new file formats are necessary.

283

Tool support Because Java’s annotation mechanism is relatively mature and ships

with every copy of the Java run-time, it enjoys broad support from a variety of

tools and APIs for manipulating annotations. WCET analysis tools are there-

fore easier to implement since they can be built upon these existing mechanisms.

Comment-based WCET annotations described in the literature do not have these

features due to their proprietary nature and usually ad hoc implementation. WCET

analysis tools should instead adopt Java’s annotation standard. Doing so would likely

shorten the development cycle of such tools, leading to more prototypes and an overall

improvement in real-time research.

Unfortunately, Java’s standard is not yet a drop-in replacement for existing annota-

tion frameworks. One of the issues is a concern for embedded systems. (Embedded

systems are not directly related to WCET analysis, but real-time systems are often

embedded, so the domains overlap.) These systems normally have stringent resource

requirements, thus the Java class files deployed on them must be as small as possible.

However, Java annotations are stored in these class files, taking up valuable storage

space even though the annotation information is only required at design time.

One way to solve this problem is to change the retention policy of the annotation

to SOURCE. This prevents the annotation from being stored in the class file, but it

also destroys the benefit of bundling annotation data with the class. A preferable

workaround is to leave the annotation at the default CLASS retention level but use a

tool to strip the annotations from the class file before deploying it to the embedded

device. This removal bears no risk to violating WCET guarantees because, unlike

other approaches [64], the annotations are stored as class file attributes, not in the

executable code itself.

284

A more critical failing of Java’s annotation standard cannot be mitigated so easily.

Namely, the restriction on where annotations can be placed is a major impediment

toward using standard Java annotations in WCET tools. As a result, none of the

existing WCET annotation styles listed in Table B.1 can be fully translated to the

current system of Java annotations.

In certain scenarios, however, an approximation is possible. For example, Figure B.9

shows a test method from the JOP project [135]. The original comment-based anno-

tations have been removed and subsequently replaced with the following Java anno-

tation type:

pub l i c @ i n t e r f a c e LoopBound

{

i n t max () ;

}

As a consequence of this change, the loop bounds no longer appear adjacent to the

for loop constructs but rather at the loop variable declarations (lines 3, 8, and 14). A

WCET analysis tool can still run successfully with these modifications, but restricting

loop bounds to variable declarations means that the bound may be placed far from the

loop itself. The artificial constraint is also unintuitive because it forces programmers

to write loop constructs in an atypical and awkward style.

Other researchers, working independently, have encountered the same obstacles in

Java annotations. In fact, JSR-308 was born as a result of these very obstacles. Its

primary goal was to support annotations on types, but its secondary goal was to

loosen other restrictions on where annotations may be placed, thereby enabling new

types of analysis tools. Ultimately, the proposal did not relax them far enough for

the purpose of WCET analysis tools, which would require, at a minimum, placement

285

1 pub l i c i n t measure (boolean b , i n t v a l)
2 {
3 @LoopBound (max=10) i n t i ;
4 f o r (i = 0 ; i < 10 ; i++)
5 {
6 i f (b)
7 {
8 @LoopBound (max=4) i n t j ;
9 f o r (j = 0 ; j < 4 ; j++)

10 v a l ∗= va l ;
11 }
12 e l s e
13 {
14 @LoopBound (max=7) i n t k ;
15 f o r (k = 0 ; k < 7 ; k++)
16 v a l += va l ;
17 }
18 }
19
20 return v a l ;
21 }

Figure B.9: This altered program segment from JOP’s test suite shows how WCET
annotations might be implemented without changing the current Java standard.

of annotations directly on loop constructs (if, while, and do/while).

Although Java annotations are not currently suitable as WCET annotations, the stan-

dard is not far from becoming a virtually ideal replacement for the existing approaches

presented in Table B.1. Two changes are necessary for this to happen.

First, the standard should be modified so that annotations can be placed on loops and

basic blocks. JSR-308 has already moved the standard in this direction. Indeed, the

original proposal commented that such a change would be useful for concurrency and

atomicity (although it made no mention of WCET analysis). Furthermore, members

of the Expert Group who voted in favor of the proposal agreed that relaxing the

standard in this manner would be beneficial. For instance, Intel Corporation added

the following comment to its vote:

286

This note confirms our understanding that the scope of the JSR includes

providing for annotations on loops and blocks if the Expert Group decides

to include that after evaluation. The JSR itself should be updated to make

it clear this is in the scope.

Nortel also added:

Completely aligned with the comments by Intel, it would have been ex-

tremely useful to extend the annotations.

Second, type definitions and a naming convention for WCET annotations must be

established. Java annotations would do little good if one tool recognized @LoopBound

while another tool expected, say, @LoopMax. Establishing these conventions should be

straightforward. JSRs 181, 250, 303, and 305 have already walked this path for other

domains; a proposal for WCET annotations would merely follow in their footsteps.

B.5 A Java Compiler for WCET Annotations

Until such changes have been formally proposed and actually implemented in the

official Java platform, the Volta project provides an interim solution. It includes

a fully functional and ready-to-use Java compiler, based on Sun’s OpenJDK source

code [286], that allows annotations on loop statements. With this modified javac, the

following code becomes legal:

@LoopBound (max=100)

f o r (i n t i = 0 ; i < pe r c en t ; i++) { . . . }

287

The new annotation support requires no changes to the virtual machine or class file

format, only some compiler modifications and a few new class file attributes. In

effect, it changes Java’s language grammar for loop statements to the following non-

ambiguous production:

LoopStatement :

Annota t i on s LoopStatement

. . . // c u r r e n t body o f ‘ ‘ LoopStatement ’ ’ grammar p r oduc t i o n

The 25 kilobyte patch to javac to allow this production touches the relevant syn-

tax tree classes: JCWhileLoop, JCEnhancedForLoop, etc. It also changes the compiler

to emit class file attributes that describe the statement annotations: RuntimeVisi-

bleStatementAnnotations and RuntimeInvisibleStatementAnnotations. These attributes

are attached to the class’s Code attribute and are identical to the existing RuntimeVis-

ibleAnnotations and RuntimeInvisibleAnnotations attributes, except that they include

one additional field:

u4 pc ; // Code o f f s e t to the s t a r t o f the l oop

This field uniquely identifies the annotation and indicates to which loop it refers.

Tools can retrieve its value by loading the class annotations using BCEL or a similar

utility. For example, the Clepsydra tool from the Volta project includes a built-in

annotation reader for accessing this style of annotations for WCET analysis.

To verify that the modified compiler works correctly, Volta also includes a utility for

dumping a class’s annotations to the console. It displays them in the same struct-

like format as the Java virtual machine specification, making comparison to other

annotation formats easier. For instance, the utility reveals that compiling the code

288

Run t im e I n v i s i b l e S t a t em e n tAnn o t a t i o n s a t t r i b u t e {
u2 a t t r i b u t e n ame i n d e x = 30 (Run t ime I n v i s i b l e S t a t emen tAnno t a t i o n s) ;
u2 a t t r i b u t e l e n g t h = 15 ;
u2 num annotat ions = 1 ;
a nno t a t i o n s =

{
u2 t y p e i n d e x = 31 (LLoopBound ;) ;
u4 pc = 3 ;
u2 num e l emen t v a l u e p a i r s = 1 ;
e l e m e n t v a l u e p a i r s =

{
u2 e l ement name index = 32 (max) ;
e l emen t v a l u e v a l u e = {

u1 tag = 73 (I) ;
u2 c o n s t v a l u e i n d e x = 8 (6 4) ;

}
}

}
}

Figure B.10: The Volta project includes a utility for viewing the structure of Java
annotations. Here, the utility reveals the structure of the annotation from Figure 4.6.

from Figure 4.6 would produce the statement annotation given in Figure B.10.

B.6 Conclusion

Java annotations in their present form are not suitable as a full replacement for ex-

isting WCET annotation frameworks. However, proposals such as JSR-308 indicate

that the Java platform is evolving to a point where such annotations will eventually

become possible. They could then be integrated into existing real-time Java frame-

works, all of which would benefit from improved WCET analysis. The potential

advantages, including syntax checking, type safety, and tool support, are too great to

ignore.

289

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	What Is a True Real-time System?
	The Rise of Distributed Real-time Systems

	Interactive Analysis
	The Importance of Worst-Case Execution Time
	Current Methods for Obtaining WCET
	What Is Interactive Analysis?
	Research Objectives and Contributions

	Hardware and Software Requirements for Interactive Analysis
	The Trouble with C
	Java as a Catalyst
	Java in Real-Time Systems
	Java Microprocessors

	Annotating Control Flow for Interactive Analysis
	Related Work
	Source-Annotated Control Flow Analysis
	Strengths and Limitations of Decompilation
	Cascade: A Control Flow Analysis Tool
	Control Flow Graphs vs. Control Flow Trees
	Performance of Cascade
	Limitations of Cascade

	Interactive Worst-Case Execution Time Analysis
	The Theory of WCET Analysis
	Control Flow Analysis
	Low-level Analysis
	Longest Path Computation

	The Practice of WCET Analysis
	Research Prototypes
	Commercial Tools

	Interactive WCET Analysis
	Back-annotation
	Related Work

	The Road to True Interactive WCET Analysis

	Clepsydra: An Interactive WCET Analysis Tool
	An Overview of Clepsydra
	Assumptions and Limitations
	An Editor Plugin for Back-annotation
	The Modular Components of Clepsydra
	Analysis Strategy
	Loop Bound Strategy
	Timing Strategy
	Cache Strategy

	Evaluation
	Performance Analysis
	Accuracy Analysis
	Correctness Analysis

	Interactive Timing Analysis of Software Libraries
	Worst-case Execution Time in Libraries
	Goals for Hard Real-time Libraries
	Libraries for Real-time Java
	Related Work
	Trigonometric Library Functions
	Javolution

	Libraries for Safety-critical Environments
	Requirements for an Analyzable Real-time Library
	Canteen: A Prototype for an Analyzable Library
	Prototype Design and Implementation
	Analyzable Memory Consumption
	Analyzable Loops

	Prototype Evaluation
	Performance Analysis
	Predictability Analysis
	Heap Allocation Analysis

	Restrictions of an Analyzable Library
	Memory Pool Restrictions
	Exception Handling Compromises
	Unimplemented Methods

	Examples of Interactive WCET Analysis
	Hash Functions
	Sensor Polling

	Conclusions and Future Work
	Bibliography
	Appendices
	A Survey of Worst-Case Execution Time Analysis for Java
	Bytecode as an Intermediate Representation
	High-level Analysis for the Java Language
	Low-level WCET Analysis for Java Bytecode
	WCET Analysis for Java-specific Processors
	Other Work in WCET Analysis for Java
	Conclusion

	WCET Annotations in Java
	Prior Work in WCET Annotations for Java
	A Lack of Standards
	A Standard for WCET Annotations in Java
	Applying Java's Annotation Standard to WCET
	A Java Compiler for WCET Annotations
	Conclusion

